273
Views
28
CrossRef citations to date
0
Altmetric
Original Article

Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response

, , , , , , & show all
Pages 1243-1253 | Received 29 Oct 2015, Accepted 03 May 2016, Published online: 11 Jul 2016
 

Abstract

The effect of dissolved organic matter (DOM) on nanoparticle toxicity to plants is poorly understood. In this study, tannic acid (TA) was selected as a DOM surrogate to explore the mechanisms of neodymium oxide NPs (Nd2O3 NPs) phytotoxicity to pumpkin (Cucurbita maxima). The results from the tested concentrations showed that 100 mg L−1 Nd2O3 NPs were significantly toxic to pumpkin in term of fresh biomass, and the similar results from the bulk particles and the ionic treatments were also evident. Exposure to 100 mg L−1 of Nd2O3 NPs and BPs in 1/5 strength Hoagland’s solution not only significantly inhibited pumpkin growth, but also decreased the S, Ca, K and Mg levels in plant tissues. However, 60 mg L−1 TA significantly moderated the observed phytotoxicity, decreased Nd accumulation in the roots, and notably restored S, Ca, K and Mg levels in NPs and BPs treated pumpkin. TA at 60 mg L−1 increased superoxide dismutase (SOD) activity in both roots (17.5%) and leaves (42.9%), and catalase (CAT) activity (243.1%) in the roots exposed to Nd2O3 NPs. This finding was confirmed by the observed up-regulation of transcript levels of SOD and CAT in Nd2O3 NPs treated pumpkin analyzed by quantitative reverse transcription polymerase chain reaction. These results suggest that TA alleviates Nd2O3 BPs/NPs toxicity through alteration of the particle surface charge, thus reducing the contact and uptake of NPs by pumpkin. In addition, TA promotes antioxidant enzymatic activity by elevating the transcript levels of genes involved in ROS scavenging. Our results shed light on the mechanisms underlying the influence of DOM on the bioavailability and toxicity of NPs to terrestrial plants.

Declaration of interest

This work was supported by USDA-AFRI (2011-67006-30181) and USDA-NIFA Hatch Program (MAS 00475 and MAS00401), and National Natural Science Foundation of China (21207157 and 31470619). G.C. gratefully acknowledges the support from the China Scholarship Council (201303270005) to study at UMass.

Supplementary material available online

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.