275
Views
28
CrossRef citations to date
0
Altmetric
Original Article

Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response

, , , , , , & show all
Pages 1243-1253 | Received 29 Oct 2015, Accepted 03 May 2016, Published online: 11 Jul 2016

References

  • Aebi H. 1984. Catalase in vitro. Meth Enzymol 105:121–6
  • Ara N, Nakkanong K, Lv W, Yang J, Hu Z, Zhang M. 2013. Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two Cucurbit species (“Cucurbita maxima” and “Cucurbita moschata”) and their interspecific inbred line “Maxchata”. Int J Mol Sci 14:24008–28
  • Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, et al. 2004. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101:2642–7
  • Benn TM, Westerhoff P. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–9
  • Berube DM, Searson EM, Morton TS, Cummings CL. 2010. Project on emerging nanotechnologies-consumer product inventory evaluated. Nanotech L Bus 7:152
  • Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–66
  • Collin B, Oostveen E, Tsyusko OV, Unrine JM. 2014. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280–9
  • Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, et al. 2014. Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84:277–85
  • Dalton DA, Boniface C, Turner Z, Lindahl A, Kim HJ, Jelinek L, et al. 2009. Physiological roles of glutathione S-transferases in soybean root nodules. Plant Physiol 150:521–30
  • Dedov AG, Loktev AS. 2003. Oxidative coupling of methane catalyzed by rare earth oxides: unexpected synergistic effect of the oxide mixtures. Appl Catal A: General 245:209–20
  • Domingos RF, Tufenkji N, Wilkinson KJ. 2009. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–6
  • Dos Santos CV, Rey P. 2006. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11:329–34
  • Ghosh S, Mashayekhi H, Bhowmik P, Xing B. 2010. Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids. Langmuir 26:873–9
  • Godde D, Dannehl H. 1994. Stress-induced chlorosis and increase in D1-protein turnover precede photoinhibition in spinach suffering under magnesium/sulphur deficiency. Planta 195:291–300
  • Gunsolus IL, Mousavi MP, Hussein K, Bühlmann P, Haynes CL. 2015. Effects of humic and fulvic acids on silver nanoparticle stability, dissolution, and toxicity. Environ Sci Technol 49:8078–86
  • Hashimoto K, Kudla J. 2011. Calcium decoding mechanisms in plants. Biochimie 93:2054–9
  • Hawthorne J, De la Torre Roche R, Xing B, Newman LA, Ma X, Majumdar S, et al. 2014. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ Sci Technol 48:13102–9
  • Hernes PJ, Hedges JI. 2000. Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts. Anal Chem 72:5115–24
  • Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, et al. 2005. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–83
  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, et al. 2008. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–9
  • Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–44
  • Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, et al. 2012. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241:55–62
  • Li L, Wu H, Peijnenburg WJ, van Gestel CA. 2015. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida. Nanotoxicology 9:792–801
  • Lin D, Xing B. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods 25:402–8
  • Lopez ML, Peralta-Videa JR, Castillo-Michel H, Martinez-Martinez A, Gardea- Torresdey JL. 2007. Lead toxicity in alfalfa plants exposed to phytohormones and ethylene diaminetetracetic acid monitored by peroxidase, catalase and amylase activities. Environ Toxicol Chem 26:2717–23
  • Lowry GV, Gregory KB, Apte SC, Lead JR. 2012. Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–9
  • Lv J, Zhang S, Luo L, Han W, Zhang J, Yang K, Christie P. 2012. Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ Sci Technol 46:7215–21
  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher PO. 2013. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–78
  • Ma C, Chhikara S, Minocha R, Long S, Masante C, White JC, et al. 2015. Reduced silver nanoparticle phytotoxicity in Crambe abyssinica with enhanced glutathione production by overexpressing bacterial γ-Glutamylcysteine synthase. Environ Sci Technol 49:10117–26
  • Ma Y, He X, Zhang P, Zhang Z, Guo Z, Tai R, et al. 2011. Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5:743–53
  • Meloni DA, Oliva MA, Martinez CA, Cambraia J. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76
  • Navarro DA, Bisson MA, Aga DS. 2012. Investigating uptake of water dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211:427–35
  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, et al. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–86
  • Panda SK, Singha LB, Khan MH. 2003. Does aluminium phytotoxicity induce oxidative stress in greengram (Vigna radiate)? Bulg. J Plant Physiol 29:77–86
  • Peng C, Zhang H, Fang H, Xu C, Huang H, Wang Y, et al. 2015. Natural organic matter induced alleviation of the phytotoxicity to rice (Oryza Sativa L.) caused by CuO nanoparticles. Environ Toxicol Chem 34:1996–2003
  • Peralta-Videa JR, Hernandez-ViezcasJ A, Zhao L, Diaz BC, Ge Y, Priester JH, et al. 2014. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–35
  • Que WX, Kam CH, Zhou Y, Lam YL, Chan YC. 2001. Yellow-to-violet upconversion in neodymium oxide nanocrystal/titania/ormosil composite sol–gel thin films derived at low temperature. J Appl Phys 90:4865–7
  • Quik JT, Lynch I, Van Hoecke K, Miermans CJ, De Schamphelaere KA, Janssen CR, et al. 2010. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 81:711–15
  • Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang J, et al. 2013a. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–42
  • Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, et al. 2013b. Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–18
  • Ridley BL, O’Neill MA, Mohnen D. 2001. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–67
  • Sabnis DD, Sabnis HM. 1995. Phloem proteins: Structure, biochemistry and function. In: Iqbal, M, ed. The Cambial Derivatives. Berlin: Gebruder Borntraeger, 271–92
  • Schutzendubel A, Polle A. 2002. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–65
  • Schwabe F, Schulin R, Limbach LK, Stark W, Bürge D, Nowack B. 2013. Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512–20
  • Shandilya N, Le Bihan O, Bressot C, Morgeneyer M. 2015. Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather. Environ Sci Technol 49:2163–70
  • Tandy S, Schulin R, Nowack B. 2006. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454–63
  • Trujillo-Reyes J, Vilchis-Nestor AR, Majumdar S, Peralta-Videa JR, Gardea-Torresdey JL. 2013. Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings. J Hazard Mater 263:677–84
  • Wang Z, Li J, Zhao J, Xing B. 2011a. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–40
  • Wang H, Kou X, Pei Z, Xiao JQ, Shan XQ, Xing B. 2011b. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita maxima) plants. Nanotoxicol 5:30–42
  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B. 2012. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L). Environ Sci Technol 46:4434–41
  • Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, et al. 2012. Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225:131–8
  • Zhao L, Sun Y, Hernandez-Viezcas JA, Hong J, Majumdar S, Niu G, et al. 2015. Monitoring the Environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in Situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol 49:2921–8
  • Zawadzki M, Kepińpski L. 2004. Synthesis and characterization of neodymium oxide nanoparticles. J Alloy Compd 380:255–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.