173
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Teleoperator-Robot-Human Interaction in Manufacturing: Perspectives from Industry, Robot Manufacturers, and Researchers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 28-40 | Received 09 Aug 2023, Accepted 21 Jan 2024, Published online: 08 Feb 2024
 

OCCUPATIONAL APPLICATIONS

Industrial robots have become an important aspect in modern industry. In the context of human-robot collaboration, enabling teleoperated robots to work in close proximity to local/onsite humans can provide new opportunities to improve human engagement in a distributed workplace. Interviews with industry stakeholders highlighted several potential benefits of such teleoperator-robot-human collaboration (tRHC), including the application of tRHC to tasks requiring both expertise and manual dexterity (e.g., maintenance and highly skilled tasks in sectors including construction, manufacturing, and healthcare), as well as opportunities to expand job accessibility for individuals with disabilities and older individuals. However, interviewees also indicated potential challenges of tRHC, particularly related to human perception (e.g., perceiving remote environments), safety, and trust. Given these challenges, and the current limited information on the practical value and implementation of tRHC, we propose several future research directions, with a focus on human factors and ergonomics, to help realize the potential benefits of tRHC.

TECHNICAL ABSTRACT

Background

The increasing prevalence of robots in industrial environments is attributed in part to advancements in collaborative robot technologies, enabling robots to work in close proximity to humans. Simultaneously, the rise of teleoperation, involving remote robot control, poses unique opportunities and challenges for human-robot collaboration (HRC) in diverse and distributed workspaces.

Purpose

There is not yet a comprehensive understanding of HRC in teleoperation, specifically focusing on collaborations involving the teleoperator, the robot, and the local or onsite workers in industrial settings, here referred to as teleoperator-robot-human collaboration (tRHC). We aimed to identify opportunities, challenges, and potential applications of tRHC through insights provided from industry stakeholders, thereby supporting effective future industrial implementations.

Methods

Thirteen stakeholders in robotics, specializing in different domains (i.e., safety, robot manufacturing, aerospace/automotive manufacturing, and supply chains), completed semi-structured interviews that focused on exploring diverse aspects relevant to tRHC. The interviews were then transcribed and thematic analysis was applied to group responses into broader categories, which were further compared across stakeholder industries.

Results

We identified three main categories and 13 themes from the interviews. These categories include Benefits, Concerns, and Technical Challenges. Interviewees highlighted accessibility, ergonomics, flexibility, safety, time & cost saving, and trust as benefits of tRHC. Concerns raised encompassed safety, standards, trust, and workplace optimization. Technical challenges consisted of critical issues such as communication time delays, the need for high dexterity in robot manipulators, the importance of establishing shared situational awareness among all agents, and the potential of augmented and virtual reality in providing immersive control interfaces.

Conclusions

Despite important challenges, tRHC could offer unique benefits, facilitating seamless collaboration among the teleoperator, teleoperated robot(s), and onsite workers across physical and geographic boundaries. To realize such benefits and address the challenges, we propose several research directions to further explore and develop tRHC capabilities.

Acknowledgements

The authors thank the student assistant, Mohamad Sadra Rajabi, for his assistance with data cleaning and initial theme exploration.

Conflict of Interest

The authors declare there is no Complete of Interest at this study.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This manuscript is based upon work supported by the National Science Foundation under Grant [2222468], and a Virginia Tech Institute for Creativity, Arts, and Technology (ICAT) Major Seed Grant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.