195
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Teleoperator-Robot-Human Interaction in Manufacturing: Perspectives from Industry, Robot Manufacturers, and Researchers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 28-40 | Received 09 Aug 2023, Accepted 21 Jan 2024, Published online: 08 Feb 2024

References

  • Adriaensen, A., Berx, N., Pintelon, L., Costantino, F., Di Gravio, G., & Patriarca, R. (2022). Interdependence Analysis in collaborative robot applications from a joint cognitive functional perspective. International Journal of Industrial Ergonomics, 90, 103320. https://doi.org/10.1016/j.ergon.2022.103320
  • Adriaensen, A., Costantino, F., Di Gravio, G., & Patriarca, R. (2022). Teaming with industrial cobots: A socio-technical perspective on safety analysis. Human Factors and Ergonomics in Manufacturing & Service Industries, 32(2), 173–198. https://doi.org/10.1002/hfm.20939
  • Ahmad, M. A., & Bilberg, A. (2019). Complexity-based task allocation in human-robot collaborative assembly. Industrial Robot: The International Journal of Robotics Research and Application, 46(4), 471–480. https://doi.org/10.1108/IR-11-2018-0231
  • Alatorre, D., Nasser, B., Rabani, A., Nagy-Sochacki, A., Dong, X., Axinte, D., & Kell, J. (2019). Teleoperated, in situ repair of an aeroengine: Overcoming the internet latency hurdle. IEEE Robotics & Automation Magazine, 26(1), 10–20. https://doi.org/10.1109/MRA.2018.2881977
  • Almeida, L., Menezes, P., & Dias, J. (2020). Interface transparency issues in teleoperation. Applied Sciences, 10(18), 6232. https://doi.org/10.3390/app10186232
  • Anne-Sophie, N., & Adélaïde, B. (2009). Verbal communication as a sign of adaptation in socio-technical systems: The case of robotic surgery. 9th Bi-Annual International Conference on Naturalistic Decision Making (NDM9), 9, 267–272. https://doi.org/10.14236/ewic/NDM2009.39
  • Arboleda, S. A., Pascher, M., Lakhnati, Y., & Gerken, J. (2020). Understanding human-robot collaboration for people with mobility impairments at the workplace, a thematic analysis. 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 561–566). IEEE. https://doi.org/10.1109/RO-MAN47096.2020.9223489
  • Balaguer, C., Gimenez, A., Huete, A. J., Sabatini, A. M., Topping, M., & Bolmsjo, G. (2006). The MATS robot: Service climbing robot for personal assistance. IEEE Robotics & Automation Magazine, 13(1), 51–58. https://doi.org/10.1109/MRA.2006.1598053
  • Bejczy, B., Bozyil, R., Vaičekauskas, E., Krogh Petersen, S. B., Bøgh, S., Hjorth, S. S., & Hansen, E. B. (2020). Mixed reality interface for improving mobile manipulator teleoperation in contamination critical applications. Procedia Manufacturing, 51, 620–626. https://doi.org/10.1016/j.promfg.2020.10.087
  • Bhave, D. P., Teo, L. H., & Dalal, R. S. (2020). Privacy at work: A review and a research agenda for a contested terrain. Journal of Management, 46(1), 127–164. https://doi.org/10.1177/0149206319878254
  • Champney, R. K., Stanney, K. M., Hash, P. A. K., Malone, L. C., Kennedy, R. S., & Compton, D. E. (2007). Recovery from virtual environment exposure: Expected time course of symptoms and potential readaptation strategies. Human Factors, 49(3), 491–506. https://doi.org/10.1518/001872007X200120
  • Chemweno, P., Pintelon, L., & Decre, W. (2020). Orienting safety assurance with outcomes of hazard analysis and risk assessment: A review of the ISO 15066 standard for collaborative robot systems. Safety Science, 129, 104832. https://doi.org/10.1016/j.ssci.2020.104832
  • Chen, Y., Zhang, B., Zhou, J., & Wang, K. (2020). Real-time 3D unstructured environment reconstruction utilizing VR and Kinect-based immersive teleoperation for agricultural field robots. Computers and Electronics in Agriculture, 175, 105579. https://doi.org/10.1016/j.compag.2020.105579
  • Desbats, P., Geffard, F., Piolain, G., & Coudray, A. (2006). Force-feedback teleoperation of an industrial robot in a nuclear spent fuel reprocessing plant. Industrial Robot: An International Journal, 33(3), 178–186. https://doi.org/10.1108/0143991061070300
  • El Zaatari, S., Marei, M., Li, W., & Usman, Z. (2019). Cobot programming for collaborative industrial tasks: An overview. Robotics and Autonomous Systems, 116, 162–180. https://doi.org/10.1016/j.robot.2019.03.003
  • Fryman, J., & Matthias, B. (2012). Safety of industrial robots: From conventional to collaborative applications. ROBOTIK 2012; 7th German Conference on Robotics (pp. 1–5). https://ieeexplore.ieee.org/abstract/document/6309480/
  • Goertz, R. C. (1952). Fundamentals of general-purpose remote manipulators. Nucleonics, 10, 36–42. https://cir.nii.ac.jp/crid/1572824500707483904
  • Goodman, L. A. (1961). Snowball sampling. The Annals of Mathematical Statistics, 32(1), 148–170. https://doi.org/10.1214/aoms/1177705148
  • Graham, J. L., Manuel, S. G., Johannes, M. S., & Armiger, R. S. (2011). Development of a multi-modal haptic feedback system for dexterous robotic telemanipulation. 2011 IEEE International Conference on Systems, Man, and Cybernetics (pp. 3548–3553). IEEE. https://doi.org/10.1109/ICSMC.2011.6084219
  • Guiochet, J., Machin, M., & Waeselynck, H. (2017). Safety-critical advanced robots: A survey. Robotics and Autonomous Systems, 94, 43–52. https://doi.org/10.1016/j.robot.2017.04.004
  • Hanna, A., Larsson, S., Götvall, P.-L., & Bengtsson, K. (2022). Deliberative safety for industrial intelligent human–robot collaboration: Regulatory challenges and solutions for taking the next step towards industry 4.0. Robotics and Computer-Integrated Manufacturing, 78, 102386. https://doi.org/10.1016/j.rcim.2022.102386
  • Havoutis, I., & Calinon, S. (2017). Supervisory teleoperation with online learning and optimal control. 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1534–1540). https://doi.org/10.1109/ICRA.2017.7989183
  • Healey, A. N., & Benn, J. (2009). Teamwork enables remote surgical control and a new model for a surgical system emerges. Cognition, Technology & Work, 11(4), 255–265. https://doi.org/10.1007/s10111-008-0125-0
  • Hirche, S., & Buss, M. (2012). Human-oriented control for haptic teleoperation. Proceedings of the IEEE, 100(3), 623–647. https://doi.org/10.1109/JPROC.2011.2175150
  • Hollnagel, E., & Woods, D. D. (2005). Joint cognitive systems: Foundations of cognitive systems engineering. CRC Press. https://play.google.com/store/books/details?id=V-mcFVvrgwYC
  • Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277–1288. https://doi.org/10.1177/1049732305276687
  • Hughes, C. L., Fidopiastis, C., Stanney, K. M., Bailey, P. S., & Ruiz, E. (2020). The psychometrics of cybersickness in augmented reality. Frontiers in Virtual Reality, 1:602954. https://doi.org/10.3389/frvir.2020.602954
  • Jankowski, J., & Grabowski, A. (2015). Usability evaluation of VR interface for mobile robot teleoperation. International Journal of Human-Computer Interaction, 31(12), 882–889. https://doi.org/10.1080/10447318.2015.1039909
  • Kebria, P. M., Khosravi, A., Nahavandi, S., Shi, P., & Alizadehsani, R. (2020). Robust adaptive control scheme for teleoperation systems with delay and uncertainties. IEEE Transactions on Cybernetics, 50(7), 3243–3253. https://doi.org/10.1109/TCYB.2019.2891656
  • Khokar, K., Alqasemi, R., Sarkar, S., Reed, K., & Dubey, R. (2014). A novel telerobotic method for human-in-the-loop assisted grasping based on intention recognition. 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4762–4769). IEEE. https://doi.org/10.1109/ICRA.2014.6907556
  • Lee, J. S., Ham, Y., Park, H., & Kim, J. (2022). Challenges, tasks, and opportunities in teleoperation of excavator toward human-in-the-loop construction automation. Automation in Construction, 135, 104119. https://doi.org/10.1016/j.autcon.2021.104119
  • Leng, J., Sha, W., Wang, B., Zheng, P., Zhuang, C., Liu, Q., Wuest, T., Mourtzis, D., & Wang, L. (2022). Industry 5.0: Prospect and retrospect. Journal of Manufacturing Systems, 65, 279–295. https://doi.org/10.1016/j.jmsy.2022.09.017
  • Liu, Y.-C., & Chopra, N. (2013). Control of semi-autonomous teleoperation system with time delays. Automatica, 49(6), 1553–1565. https://doi.org/10.1016/j.automatica.2013.02.009
  • Luo, J., He, W., & Yang, C. (2020). Combined perception, control, and learning for teleoperation: Key technologies, applications, and challenges. Cognitive Computation and Systems, 2(2), 33–43. https://doi.org/10.1049/ccs.2020.0005
  • Luo, J., Lin, Z., Li, Y., & Yang, C. (2020). A teleoperation framework for mobile robots based on shared control. IEEE Robotics and Automation Letters, 5(2), 377–384. https://doi.org/10.1109/LRA.2019.2959442
  • Luo, J., Yang, C., Su, H., & Liu, C. (2019). A robot learning method with physiological interface for teleoperation systems. Applied Sciences, 9(10), 2099. https://doi.org/10.3390/app9102099
  • Michaelis, J. E., Siebert-Evenstone, A., Shaffer, D. W., & Mutlu, B. (2020). Collaborative or simply uncaged? Understanding Human-Cobot interactions in automation. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–12). https://doi.org/10.1145/3313831.3376547
  • Milgram, P., & Ballantyne, J. (1997). Real world teleoperation via virtual environment modeling. International Conference on Artificial Reality & Tele-Existence. https://www.researchgate.net/profile/Paul-Milgram/publication/2439404_Real_World_Teleoperation_via_Virtual_Environment_Modelling/links/0c96052ade643ea753000000/Real-World-Teleoperation-via-Virtual-Environment-Modelling.pdf
  • Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data,.3(2), 205395171667967. &. https://journals.sagepub.com/doi/abs/10.1177/2053951716679679
  • Mitzner, T. L., Stuck, R., Hartley, J. Q., Beer, J. M., & Rogers, W. A. (2017). Acceptance of tele video technology by adults aging with a mobility impairment for health and wellness interventions. Journal of Rehabilitation and Assistive Technologies Engineering, 4, 2055668317692755. https://doi.org/10.1177/2055668317692755
  • Müller, C. (2023). World robotics 2023 – Industrial robots. IFR Statistical Department, VDMA Services GmbH. https://ifr.org/img/worldrobotics/Executive_Summary_WR_Industrial_Robots_2023.pdf
  • Müller-Abdelrazeq, S. L., Schönefeld, K., Haberstroh, M., & Hees, F. (2019). Interacting with collaborative robots—A study on attitudes and acceptance in industrial contexts. In O. Korn (Ed.), Social robots: Technological, societal and ethical aspects of human-robot interaction (pp. 101–117). Springer International Publishing. https://doi.org/10.1007/978-3-030-17107-0_6
  • Murphy, R. R., & Rogers, E. (1996). Cooperative assistance for remote robot supervision. Presence: Teleoperators and Virtual Environments, 5(2), 224–240. https://doi.org/10.1162/pres.1996.5.2.224
  • Nalivaiko, E., Davis, S. L., Blackmore, K. L., Vakulin, A., & Nesbitt, K. V. (2015). Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiology & Behavior, 151, 583–590. https://doi.org/10.1016/j.physbeh.2015.08.043
  • Nielsen, C. W., Goodrich, M. A., & Ricks, R. W. (2007). Ecological interfaces for improving mobile robot teleoperation. IEEE Transactions on Robotics, 23(5), 927–941. https://doi.org/10.1109/TRO.2007.907479
  • Pacchierotti, C., Tirmizi, A., & Prattichizzo, D. (2014). Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Transactions on Applied Perception, 11(1), 1–16. https://doi.org/10.1145/2604969
  • Palmisano, S., Mursic, R., & Kim, J. (2017). Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 46, 1–8. https://doi.org/10.1016/j.displa.2016.11.001
  • Panagou, S., Neumann, W. P., & Fruggiero, F. (2023). A scoping review of human robot interaction research towards Industry 5.0 human-centric workplaces. International Journal of Production Research, 62(3), 974–990. https://doi.org/10.1080/00207543.2023.2172473
  • Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice (4th ed.). SAGE Publications. https://play.google.com/store/books/details?id=ovAkBQAAQBAJ
  • Polushin, I. G., Liu, P. X., & Lung, C.-H. (2007). A force-reflection algorithm for improved transparency in bilateral teleoperation with communication delay. IEEE/ASME Transactions on Mechatronics, 12(3), 361–374. https://doi.org/10.1109/TMECH.2007.897285
  • Pouliot, N., & Montambault, S. (2009). LineScout Technology: From inspection to robotic maintenance on live transmission power lines. 2009 IEEE International Conference on Robotics and Automation (pp. 1034–1040). IEEE. https://doi.org/10.1109/ROBOT.2009.5152291
  • Qian, K., Song, A., Bao, J., & Zhang, H. (2012). Small teleoperated robot for nuclear radiation and chemical leak detection. International Journal of Advanced Robotic Systems, 9(3), 70. https://doi.org/10.5772/50720
  • Rastogi, A. (1997). Design of an interface for teleoperation in unstructured environments using augmented reality displays. elibrary.ru. https://elibrary.ru/item.asp?id=5594351
  • Robla-Gomez, S., Becerra, V. M., Llata, J. R., Gonzalez-Sarabia, E., Torre-Ferrero, C., & Perez-Oria, J. (2017). Working together: A review on safe human-robot collaboration in industrial environments. IEEE Access. 5, 26754–26773. https://doi.org/10.1109/ACCESS.2017.2773127
  • Salmon, P. M., Read, G. J. M., Walker, G. H., Lenné, M. G., & Stanton, N. A. (2018). Distributed situation awareness in road transport: Theory, measurement, and application to intersection design. Routledge. https://play.google.com/store/books/details?id=yXt_DwAAQBAJ
  • Saltaren, R., Aracil, R., Alvarez, C., Yime, E., & Sabater, J. M. (2007). Field and service applications – Exploring deep sea by teleoperated robot – An underwater parallel robot with high navigation capabilities. IEEE Robotics & Automation Magazine, 14(3), 65–75. https://doi.org/10.1109/MRA.2007.905502
  • Sato, S., Song, T., & Aiyama, Y. (2021). Development of tele-operated underfloor mobile manipulator. Journal of Robotics and Mechatronics, 33(6), 1398–1407. https://doi.org/10.20965/jrm.2021.p1398
  • Selvaggio, M., Cognetti, M., Nikolaidis, S., Ivaldi, S., & Siciliano, B. (2021). Autonomy in physical human-robot interaction: A brief survey. IEEE Robotics and Automation Letters, 6(4), 7989–7996. https://doi.org/10.1109/LRA.2021.3100603
  • Sharples, S., Cobb, S., Moody, A., & Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 29(2), 58–69. https://doi.org/10.1016/j.displa.2007.09.005
  • Strauss, A., & Corbin, J. (1994). Grounded theory methodology: An overview. In N. K. Denzin (Ed.), Handbook of qualitative research (Vol. 643, pp. 273–285). Sage. https://psycnet.apa.org/fulltext/1994-98625-016.pdf
  • Szpak, A., Michalski, S. C., Saredakis, D., Chen, C. S., & Loetscher, T. (2019). Beyond feeling sick: The visual and cognitive aftereffects of virtual reality. IEEE Access. 7, 130883–130892. https://doi.org/10.1109/ACCESS.2019.2940073
  • Tanwani, A. K., & Calinon, S. (2017). A generative model for intention recognition and manipulation assistance in teleoperation [Paper presentation]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 43–50). https://doi.org/10.1109/IROS.2017.8202136
  • Theofilis, K., Orlosky, J., Nagai, Y., & Kiyokawa, K. (2016). Panoramic view reconstruction for stereoscopic teleoperation of a humanoid robot. 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (pp. 242–248). https://doi.org/10.1109/HUMANOIDS.2016.7803284
  • Triantafyllidis, E., Mcgreavy, C., Gu, J., & Li, Z. (2020). Study of multimodal interfaces and the improvements on teleoperation. IEEE Access. 8, 78213–78227. https://doi.org/10.1109/ACCESS.2020.2990080
  • Tunstel, E. W., Wolfe, K. C., Kutzer, M. D. M., Johannes, M. S., Brown, C. Y., Katyal, K. D., Para, M. P., & Zeher, M. J. (2013). Recent enhancements to mobile bimanual robotic teleoperation with insight toward improving operator control. Citeseer. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3a0f6ac63a25935ecf4608b3c64c2bd5b00d6631
  • Várkonyi, T. A., Rudas, I. J., Pausits, P., & Haidegger, T. (2014). Survey on the control of time delay teleoperation systems. IEEE 18th International Conference on Intelligent Engineering Systems INES 2014 (pp. 89–94). https://doi.org/10.1109/INES.2014.6909347
  • Vaz, J. C., Dave, A., Kassai, N., Kosanovic, N., & Oh, P. Y. (2022). Immersive auditory-visual real-time avatar system of ANA avatar XPRIZE finalist Avatar-Hubo. 2022 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO) (pp. 1–6). https://doi.org/10.1109/ARSO54254.2022.9802964
  • Villani, V., Pini, F., Leali, F., & Secchi, C. (2018). Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics, 55, 248–266. https://doi.org/10.1016/j.mechatronics.2018.02.009
  • Vovk, A., Wild, F., Guest, W., & Kuula, T. (2018). Simulator sickness in augmented reality training using the microsoft Hololens. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1–9). https://doi.org/10.1145/3173574.3173783
  • Yanco, H. A., & Drury, J. (2004). “Where am I?” Acquiring situation awareness using a remote robot platform. 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583) (pp. 2835–2840). IEEE. https://doi.org/10.1109/ICSMC.2004.1400762
  • Yang, E., & Dorneich, M. C. (2017). The emotional, cognitive, physiological, and performance effects of variable time delay in robotic teleoperation. International Journal of Social Robotics, 9(4), 491–508. https://doi.org/10.1007/s12369-017-0407-x
  • Zhang, G., & Hansen, J. P. (2022). Telepresence robots for people with special needs: A systematic review. International Journal of Human–Computer Interaction, 38(17), 1651–1667. https://doi.org/10.1080/10447318.2021.2009673

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.