301
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Acridine derivatives: a patent review (2009 – 2010)

&
Pages 437-454 | Published online: 16 Feb 2011
 

Abstract

Introduction: Acridines are highly important heterocyclic compounds with immense biological significance as they act as the central core of antitumor, anti-protozoan, antiviral and multi-drug resistance modulating agents. The tricyclic aromatic structure of acridine is primarily responsible for its intercalation with DNA by controlling its biological profile and the substitution pattern of the molecule, which leads to several other applications.

Areas covered: In this review, acridine-based functional molecules and patents of acridine derivatives filed from 2009 to 2010 are discussed. The latest information about the medical importance of new acridine-based molecules is also discussed (e.g., materials with sensing and electrical/thermal properties).

Expert opinion: The tricyclic aromatic heterocyclic structure of acridine has a lot of potential for biological and material utilization. The versatility of fluorescent acridines could be further enhanced by introducing amino-acid chains or other polar substituents on the central moiety, which due to increased water solubility could increase their effectiveness under physiological conditions.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,757.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.