307
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Acridine derivatives: a patent review (2009 – 2010)

&
Pages 437-454 | Published online: 16 Feb 2011

Bibliography

  • Acheson RM. The chemistry of Heterocyclic compounds: Acridines. 2nd edition, ISBN 0-471-37753-8;1973
  • Demeunynck M. Antitumour acridines. Expert Opin Ther Patents 2004;14:55-70
  • Denny WA. Chemotherapeutic effects of acridine derivatives. Med Chem Rev 2004;1:257-66
  • Belmont P, Bosson J, Godet T, Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med Chem 2007;7:139-69
  • Langner KM, Kedzierski P, Sokalski WA, Physical nature of ethidium and proflavine interactions with nucleic acid bases in the intercalation plane. J Phys Chem B 2006;110:9720-7
  • Liu C, Jiang Z, Zhang Y, Intercalation interactions between dsDNA and acridine studied by single molecule force spectroscopy. Langmuir 2007;23:9140-2
  • Denny WA. Acridine-4-carboxamides and the concept of minimal DNA intercalators. Small Mol DNA RNA Binders 2003;2:482-502
  • Hopcroft NH, Brogden AL, Searcey M, X-ray crystallographic study of DNA duplex cross-linking: simultaneous binding to two d(CGTACG)2 molecules by a bis(9- aminoacridine-4-carboxamide) derivative. Nucleic Acids Res 2006;34:6663-72
  • Brogen AL, Hopcroft NH, Searcy M, Ligand bridging of the DNA holliday junction: molecular recognition of a stacked-X four-way junction by a small molecule. Angew Chem Int Ed 2007;46:3850-54
  • Baguley BC, Wakelin LPG, Jacintho JD, Mechanisms of action of DNA intercalating acridine-based drugs: How important are contributions from electron transfer and oxidative stress? Curr Med Chem 2003;10:2643-9
  • Lerman BS. The structure of the DNA-Acridine complex. Proc Natl Acad Sci USA 1963;49:94-102
  • Hughes GK, Lahey FN, Price JR, Alkaloids of the Australian Rutaceae. Nature 1948;162:223-4
  • Tillequin F, Michel S, Skaltsounis A-L. Acronycine-type alkaloids: chemistry and biology. In Pelletier SW, Editor, Alkaloids: chemical and biological perspectives (Volume 12, pp. 1–102). Oxford: Pergamo;1998
  • Tillequin F. Sarcomelicope alkaloids as leads for the discovery of new antitumor acronycine derivatives. Phytochem Rev 2002;1:355-68
  • Michel S, Gaslonde T, Tillequin F. Benzo[b]acronycine derivatives: a novel class of antitumor agents. Eur J Med Chem 2004;39:649-55
  • Delfourne E, Bastide J. Marine pyridoacridine alkaloids and synthetic analogues as antitumor agents. Med Res Rev 2003;23:234-52
  • Marshall KM, Matsumoto SS, Holden JA, The anti-neoplastic and novel topoisomerase II-mediated cytotoxicity of neoamphimedine, a marine pyridoacridine. Biochem Pharmacol 2003;66:447-58
  • Marshall KM, Barrows LR. Biological activities of pyridoacridines. Nat Prod Rep 2004;21:731-51
  • Finlay GJ, Atwell GJ, Baguley BC. Inhibition of the action of the topoisomerase II poison amsacrine by simple aniline derivatives: evidence for drug-protein interactions. Oncol Res 1999;11:255-64
  • Cain BF, Atwell GJ, Denny WA. Potential antitumor agents. 16. 4′-(Acridin-9-ylamino)methanesulfonanilides. J Med Chem 1975;18:1110-17
  • Nelson EM, Tewey KM, Liu LF. Mechanism of antitumor drug action: Poisoning of mammalian DNA toposiomerase II on DNA by 4′-(9-acridinylamino)-methanesulfon-m-anisidine. Proc Natl Acad Sci USA 1984;81:1361-5
  • Su T-L, Chou T-C, Kim JY, 9-Substituted acridine derivatives with long half-life and potent antitumor activity: synthesis and structure-activity relationships. J Med Chem 1995;38:3226-35
  • Chourpa I, Morjani H, Riou J-F, Intracellular molecular interactions of antitumor drug amsacrine (m-AMSA) as revealed by surface-enhanced Raman spectroscopy. FEBS Lett 1996;397:61-4
  • Chang J-Y, Lin C-F, Pan W-Y, New analogues of AHMA as potential antitumor agents: synthesis and biological activity. Bioorg Med Chem 2003;11:4959-69
  • Bacherikov VA, Chang J-Y, Lin Y-W, Synthesis and antitumor activity of 5-(9- acridinylamino)anisidine derivatives. Bioorg Med Chem 2005;13:6513-20
  • Shin BS, Kim DH, Cho CY, Pharmacokinetic scaling of SJ-8029, a Novel anticancer agent possessing microtubule and topoisomerase inhibiting activities, by species-invariant time methods. Biopharm drug dispos 2003;24:191-7
  • Denny WA, Baguley BC. Dual topoisomerase I/II inhibitors in cancer therapy. Curr Top Med Chem 2003;3:339-53
  • Adams A, Guss JM, Denny WA, Crystal structure of 9-amino-N-[2-(4- morpholinyl) ethyl]- 4- acridinecarboxamide bound to d(CGTACG)2: implications for structure-activity relationships of acridinecarboxamide topoisomerase poisons. Nucleic Acid Res 2002;30:719-25
  • Hutchins RA, Crenshaw JM, Graves DE, Influence of Substituent Modifications on DNA Binding Energetics of Acridine-Based Anticancer Agents. Biochemistry 2003;42:13754-61
  • Dittrich C, Coudart B, Paz-Ares L, Phase II study of XR 5000 (DACA), an inhibitor of topoisomerase I and II, administered as a 120-h infusion in patients with non-small cell lung cancer. Eur J Cancer 2003;39:330-4
  • Dittrich C, Dieras V, Kerbart P, Phase II study of XR5000 (DACA), an inhibitor of topoisomerase I and II, administered as 120-h infusion in patients with advanced ovarian cancer. Invest New Drugs 2003;21:347-52
  • Wesierska-Gadek J, Schloffer D, Gueorguieva M, Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout cells to antitumor triazoloacridone C-1305 is associated with permanent G2 cell cycle arrest. Cancer Res 2004;64:4487-97
  • Lemke K, Poindessous V, Skladanowski A, The antitumor triazoloacridone C-1305 is a topoisomerase II poison with unusual properties. Mol Pharmacol 2004;66:1035-42
  • Mazerska Z, Sowinski P, Konopa J. Molecular mechanism of the enzymatic oxidation investigated for imidazoacridinone antitumor drug, C-1311. Biochem Pharmacol 2003;66:1727-36
  • Wisniewska A, Chrapkowska A, Kot-Wasik A, Metabolic transformations of antitumor imidazoacridinone, C-1311, with microsomal fractions of rat and human liver. Acta Biochim Pol 2007;54:831-8
  • Neidle S, Read MA. G-quadruplexes as therapeutic targets. Biopolymers 2000;56:195-208
  • Read M, Harrison RJ, Romagnoli B, Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc Natl Acad Sci USA 2001;98:4844-9
  • Harrison RJ, Cuesta J, Chessari G, Trisubstituted acridine derivatives as potent and selective telomerase inhibitors. J Med Chem 2003;46:4463-76
  • Campbell NH, Parkinson GN, Reszka AP, Structural Basis of DNA Quadruplex Recognition by an Acridine drug. J Am Chem Soc 2008;130:6722-4
  • Cheng M-K, Modi C, Cookson JC, Antitumor polycyclic acridines. Search for DNA quadruplex binding selectivity in a Series of 8,13-Dimethylquino[4,3,2-kl] acridinium salts: telomere-targeted Agents. J Med Chem 2008;51:963-75
  • Heald RA, Modi C, Cookson JC, Antitumor polycyclic acridines: synthesis and telomerase-inhibitory activity of methylated pentacyclic acridinium salts. J Med Chem 2002;45:590-7
  • Ellis MJ, Stevens MFG. Antitumour polycyclic acridines. Part 13. Synthesis of 2-substituted 7H-pyrido[4,3,2-kl]acridines by thermolysis of 9-(5-alkyltriazol-1-yl) acridines. J Chem Res 2003;75-7
  • Heald RA, Stevens MFG. Antitumor polycyclic acridines. Palladium(0)-mediated syntheses of quino[4,3,2-kl]acridines bearing peripheral substituents as potential telomere maintenance inhibitors. Org Biomol Chem 2003;1:3377-89
  • Mergny J-L, Lacroix L, Teulade-Fichou M-P, Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci USA 2001;98:3062-7
  • Icos Corporation (USA). Materials and methods to potentiate cancer treatment. WO2004085418; 2004
  • Hannun YA, Bell RM. Aminoacridines, potent inhibitors of protein kinase C. J Biol Chem 1988;263:5124-31
  • Gniazdowski M, Szmigiero L. Nitracrine and its congeners: an overview. Gen Pharmac 1995;26:473-81
  • Hoffmann GR, Yin CC, Terry CE, Frameshift mutations induced by 4 isomeric nitroacridines and their des-nitro counterpart in the lacZ reversion assay in Escherichia coli. Environ Mol Mutagen 2006;47:82-94
  • Narayanan R, Tiwari P, Inoa D, Comparative analysis of mutagenic potency of 1- nitro-acridine derivatives. Life Sci 2005;77:2312-23
  • Reid JM, Walker DL, Miller JK, The metabolism of pyrazoloacridine (NSC 366140) by cytochromes p450 and flavin monooxygenase in human liver microsomes. Clin Cancer Res 2004;10:1471-80
  • Keshelava N, Tsao-Wei D, Reynolds CP. Pyrazoloacridine is active in multidrug-resistant neuroblastoma cell lines with nonfunctional p53. Clin Cancer Res 2003;9:3492-502
  • Ma Z, Saluta G, Kucera GL, Effect of linkage geometry on biological activity in thiourea and guanidine-substituted acridines and platinum–acridines. Bioorg Med Chem Lett 2008;18:3799-801
  • Augustus TM, Anderson J, Hess SM, Bis(acridinylthiourea)platinum(II) complexes: synthesis, DNA affinity and biological activity in glioblastoma cells. Bioorg Med Chem Lett 2003;13:855-58
  • Kapuriya N, Kapuriya K, Zhang X, Synthesis and biological activity of stable and potent antitumor agents, aniline nitrogen mustards linked to 9-anilinoacridines via a urea linkage. Bioorg Med Chem 2008;16:5413-23
  • Goodell JR, Ougolkov AV, Hiasa H, Acridine –based agents with topoisomerase II activity inhibit pancreatic cancer cell proliferation and induce apoptosis. J Med Chem 2008;51:179-82
  • Liu Q, Zhang J, Wang M-Q, Synthesis, DNA binding and cleavage activity of macrocyclic polyamines bearing mono- or bis-acridine moieties. Eur J Med Chem 2010;45:5302-8
  • Cain BF, Baguley BC, Denny WA. Potential antitumor agents. 28. Deoxyribonucleic acid polyintercalating agents. J Med Chem 1978;21:658-68
  • Atwell GJ, Leupin W, Twigden SJ, Triacridine derivative: first DNA tris-intercalating ligand. J Am Chem Soc 1983;105:2913-14
  • Cremieux A, Chevalier J, Sharples D, Antimicrobial activity of 9-oxo and 9-thio acridines: correlation with intercalation into DNA and effects on macromolecular biosynthesis. Res Microbiol 1995;146:73-83
  • Mauel J, Denny W, Gamage S, 9-Anilinoacridines as potential antileishmanial agents. Antimicrob Agents Chemother 1993;37:991-6
  • Gamage SA, Figgitt DP, Wojcik SJ, Structure-activity relationships for the antileishmanial and antitrypanosomal activities of 1′-substituted 9-anilinoacridines. J Med Chem 1997;40:2634-42
  • Figgitt D, Denny W, Winkoon PC, In vitro study of anticancer acridines as potential antitrypanosomal and antimalarial agents. Antimicrob Agents Chemother 1992;36:1644-7
  • Wainwright M. Acridine- a neglected antibacterial chromophore. J Antimicrob Chemother 2001;47:1-13
  • Di Giorgio C, Shimi K, Boyer G, Synthesis and antileishmanial activity of 6-mono- substituted and 3,6-di-substituted acridines obtained by acylation of proflavine. Eur J Med Chem 2007;42:1277-84
  • Girault S, Grellier P, Berecibar A, Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): influence of the linker. J Med Chem 2000;43:2646-54
  • Gemma S, Kukreja G, Fattorusso C, Synthesis of N1-arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains. Bioorg Med Chem 2006;16:5384-88
  • Appleton DR, Pearce AN, Copp BR. Anti-tuberculosis natural products: synthesis and biological evaluation of pyridoacridine alkaloids related to ascididemin. Tetrahedron 2010;66:4977-86
  • Goodell JR, Madhok AA, Hiasa H, Synthesis and evaluation of acridine- and acridone- based anti-herpes agent with topoisomerase activity. Bioorg Med Chem 2006;14:5467-80
  • Goodell JR, Puig-Basagoiti F, Forshey BM. Identification of compounds with Anti-West Nile Virus Activity. J Med Chem 2006;49:2127-37
  • Patel MM, Mali MD, Patel SK. Bernthsen synthesis, antimicrobial activities and cytotoxicity of acridine derivatives. Bioorg Med Chem Lett 2010;20:6324-26
  • Matsubara T, Kusuzaki K, Matsumine A, Acridine orange used for photodynamic therapy accumulates in malignant musculoskeletal tumors depending on pH gradient. Anticancer Res 2006;6:187-93
  • Kusuzaki K, Murata H, Matsubara T, Clinical outcome of a novel photodynamic therapy technique using acridine orange for synovial sarcomas. Photochem Photobiol 2005;81:705-9
  • Kusuzaki K, Murata H, Matsubara T, Clinical trial of photodynamic therapy using acridine orange with/without low dose radiation as new limb salvage modality in musculoskeletal sarcomas. Anticancer Res 2005;25:1225-35
  • Ueda H, Murata H, Takeshita H, Unfiltered xenon light is useful for photodynamic therapy with acridine orange. Anticancer Res 2005;25:3979-83
  • Wilson B, Gude L, Fernandez M-J, Tunable DNA photocleavage by an acridine-imidazole conjugate. Inorg Chem 2005;44:6159-73
  • Lin Y-C, Chen C-T. Acridinium salt-based fluoride and acetate chromofluorescent probes: molecular insights into anion selectivity switching. Org Lett 2009;11:4858-61
  • Thiagarajan V, Ramamurthy P, Thirumalai D, A novel colorimetric and fluorescent chemosensor for anions involving PET and ICT pathways. Org Lett 2005;7:657-60
  • Yang Y-K, Tae J. Acridinium salt based fluorescent and colorimetric chemosensor for the detection of cyanide in water. Org Lett 2006;8:5721-3
  • Heinrich Heine Uni Dusseldorf. 9-Amino-acridine derivatives and their use for eliminating misfolded proteins. US2009124001; 2009
  • Carsten K, Ralf K, Stefen L, 9-Amino-acridine derivatives and method of treating autoimmune diseases using the same. US2009209516; 2009
  • ITI Scotland Ltd. Novel fluorescent dyes and uses thereof. US2009226940; 2009
  • Univ Ewha Ind collaboration. Acridine derivatives, preparation method thereof and selective detection method of mercury ion and/or cadmium ion using the same. KR20090070860; 2009
  • Henkel AG & Co. KGaA, Germany. 9-[4-(amino)phenyl] acridinium salts as cationic direct dyes for hair coloring. WO2009103798; 2009
  • Qian X. Song G, Cao Y, et al. Method for preparing 9-phenylacridine derivative photoinitiator from diphenylamine. CN101525392; 2009
  • United States Department of Health and Human Services, USA. Compositions and methods for inhibition of hepatocyte growth factor receptor c-Met signaling. WO2009124024; 2009
  • Avlon Pharmaceuticals. Derivatives of fluorene, anthracene, xanthene, dibenzosuberone and acridine and uses thereof. CN101730531; 2010
  • Wieslaw M C, Yi Z. Derivatives of multi-ring aromatic compounds and uses as anti-tumor agents. WO2010082912; 2010
  • Basf Se. Use of acridine derivatives as matrix materials and/or electron blockers in OLEDS. US2010219406; 2010
  • Industrial Technology Research Institute, Taiwan. Preparation of acridine derivatives useful as organic electroluminescent materials. CN101659638; 2010
  • Bierbach U. Wake Forest University, USA. Platinum acridine anti-cancer compounds and methods thereof. WO2010048499; 2010
  • Abbott Laboratories, USA. Methods and kits for detecting hemoglobin in test samples using indicator comprising acridinium compound. US20100178660; 2010
  • Lee YB, Method for fabricating photoresist composition containing acridine compound, novolak resin, and acrylic polymer, and thin film transistor substrate using the same. KR2010094758; 2010
  • Olivier BP, Laurent M, Tetrahydrocyclopenta[C]acridine derivatives as kinase inhibitors and biological. US2010285124; 2010
  • Mallinckrodt, Inc., USA. Preparation of hydrazino acridine derivatives for phototherapy. WO2010132515; 2010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.