171
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Thymosin α1 modifies podosome architecture and promptly stimulates the expression of podosomal markers in mature macrophages

, , , , , , , & (Professor) show all
Pages 101-116 | Published online: 22 Jun 2015
 

Abstract

Background and aims: The immunomodulatory activity of thymosin α1 (Tα1) on innate immunity has been extensively described, but its mechanism of action is not completely understood. We explored the possibility that Tα1-stimulation could affect the formation of podosomes, the highly dynamic, actin-rich, adhesion structures involved in macrophage adhesion/chemotaxis.

Methods: The following methods were used: optical and scanning electron microscopy for analyzing morphology of human monocyte-derived macrophages (MDMs); time-lapse imaging for visualizing the time-dependent modifications induced at early times by Tα1 treatment; confocal microscopy and Western blot for analyzing localization and expression of podosome components; and Matrigel Migration Assay and zymography for testing MDM invasive ability and metalloproteinase secretion.

Results: We obtained data to support that Tα1 could affect MDM motility, invasion and chemotaxis by promptly stimulating assembly and disassembly of podosomal structures. At very early times after its addition to cell culture medium and within 1 h of treatment, Tα1 induces modifications in MDM morphology and in podosomal components that are suggestive of increased podosome turnover.

Conclusions: Since impairment of podosome formation leads to reduced innate immunity and is associated with several immunodeficiency disorders, we confirm the validity of Tα1 as a potent activator of innate immunity and suggest possible new clinical application of this thymic peptide.

Acknowledgments

We thank Dr. Martino Tony Miele for scientific secretariat support, and Arianna Colini Baldeschi (graduating student) for contributing to sample preparation in the WB and confocal microscopy analyses.

Declaration of interest

This paper is part of a supplemental issue, sponsored by SciClone. This work was supported by two grants from the Italian Ministry of University and Research (MIUR): Research Projects of National Interest (PRIN) 2008, including MIUR Prot. No 10484 to E Garaci and PS Vallebona. In addition, E Garaci is a Thymosin patent holder. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 960.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.