775
Views
69
CrossRef citations to date
0
Altmetric
Reviews

In silico models for drug-induced liver injury – current status

&
Pages 201-217 | Published online: 17 Jan 2012
 

Abstract

Introduction: Drug-induced liver injury (DILI) is one of the most important reasons for drug attrition at both pre-approval and post-approval stages. Therefore, it is crucial to develop methods that will detect potential hepatotoxicity among drug candidates as early and quickly as possible. However, the complexity of hepatotoxicity endpoint makes it very difficult to predict. In addition, there is still a lack of sensitive and specific biomarkers for DILI that consequently leads to a scarcity of reliable hepatotoxic data, which are the key to any modelling approach.

Areas covered: This review explores the current status of existing in silico models predicting hepatotoxicity. Over the past decade, attempts have been made to compile hepatotoxicity data and develop in silico models, which can be used as a first-line screening of drug candidates for further testing.

Expert opinion: Most of the predictive methods discussed in this review are based on the structural properties of chemicals and do not take into account genetic and environmental factors; therefore, their predictions are still uncertain. To improve the predictability of in silico models for DILI, it is essential to better understand its mechanisms as well as to develop sensitive toxicogenomics biomarkers, which show relatively good differentiation between hepatotoxins and non-hepatotoxins.

Notes

This box summarises key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 727.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.