320
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Design and development of antivirals and intervention strategies against human herpesviruses using high-throughput approach

&
Pages 891-915 | Published online: 08 Jul 2014
 

Abstract

Introduction: Although a number of antiviral agents are licensed for treatment of some human herpesvirus (HHV) infections, effective antiviral therapy is not available for all HHVs. Additional complications are associated with approved drugs, such as toxicity and side effects, and rise in drug-resistant strains is a driving force for new drug development. Success in HHV vaccine development is limited with only vaccines against varicella-zoster virus currently in use in the clinic. In vitro, in vivo and in silico high-throughput (HTP) approaches and innovative microfluidic systems will provide novel technologies to efficiently identify and evaluate new targets and antiherpetic compounds. Coupled with HTP strategies for manipulation of herpesvirus viral genomes, these strategies will greatly accelerate the development of future antivirals as well as candidate vaccine intervention strategies.

Areas covered: The authors provide a brief overview of the herpesvirus family and associated diseases. Further, the authors discuss the approved and investigational antiherpetic drugs in the context of current HTP technologies.

Expert opinion: HTP technology such as microfluidic systems is crucial for the identification and validation of novel drug targets and next-generation antivirals. Current drug development is limited by the unavailability of HTP preclinical model systems. Specific advancement in the development of HTP animal-specific technology, applied in parallel, allows a more rapid evaluation of drugs at the preclinical stage. The advancement of HTP combinatorial drug therapy, especially ‘Organ-on-a-Chip’ approaches, will aid in the evaluation of future antiviral compounds and intervention strategies.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,340.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.