299
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the physical–mechanical properties of Eudragit® RS PO/RL PO and their mixtures with common pharmaceutical excipients

, &
Pages 1113-1125 | Received 06 Feb 2012, Accepted 16 Jul 2012, Published online: 20 Sep 2012
 

Abstract

Ammonio methacrylate copolymers Eudragit® RS PO and Eudragit® RL PO have found widespread use as key components in various types of extended release solid dosage forms. The deformation behavior of neat polymers and binary mixes was evaluated using Heckel Analysis, strain rate sensitivity, work of compaction and elastic recovery index. Additionally, the compact forming ability of neat materials and binary mixes were evaluated by analyzing their tabletability, compressibility and compactibility profiles. The Heckel analysis of both polymers exhibited a speed-sensitive deformation behavior typical to plastic materials. The yield values of the binary mixes of the polymers with microcrystalline cellulose revealed a linear relationship with the weight fractions of individual components. The yield values of binary mixes of both the polymers with dibasic calcium phosphate exhibited slight negative deviations from linearity. Both polymers exhibited axial relaxation after ejection typical of viscoelastic materials, as measured by the elastic recovery index values. The work of compaction and the elastic recovery index values of the binary mixtures were found to be linearly related to the weight fractions of the individual components thus, confirming ideal mixing behavior based on the composition. Addition of microcrystalline cellulose to both polymers significantly improved their tabletability and compactibility. The tensile strengths of the compacts prepared with neat materials and binary mixes with microcrystalline cellulose, dibasic calcium phosphate and lactose were the function of their solid fraction and independent of the tableting speeds tested; thus, validating compactibility as a reliable parameter in predicting acceptable tablet properties.

Acknowledgments

The authors are grateful to Sean T. Murphy, vice-president, Metropolitan Computing Corporation, E. Hanover, NJ, for providing the equipment (Presster) and guidance for the compaction studies. The authors are also thankful to CIPET (Consortium for Industrial Pharmaceutics Education and Training) and FDA for funding the study.

Declaration of interest

The authors declare that none of the authors have any relationship with any organization or person or financial interest in the subject matter or materials discussed in this manuscript that may affect the conduct or reporting of the work submitted.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.