206
Views
8
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Antioxidative effects of ethyl 2-(3-(benzo[d]thiazol-2-yl)ureido)acetate against amyloid β-induced oxidative cell death via NF-κB, GSK-3β and β-catenin signaling pathways in cultured cortical neurons

, , , , &
Pages 411-421 | Received 01 Sep 2014, Accepted 09 Jan 2015, Published online: 06 Mar 2015
 

Abstract

We have previously shown that 2-(3-(benzo[d]thiazol-2-yl)ureido)acetate (KHG21834) attenuates amyloid beta(Aβ)25–35-induced apoptotic death and shows anti-inflammatory activity against Aβ25–35-induced microglial activation. However, antioxidative effects of KHG21834 against Aβ-induced oxidative stress have not yet been reported. In the present study, we investigated the antioxidative function of KHG21834 in primary cultured cortical neurons, to expand the potential therapeutic efficacy of KHG21834. Pretreatment with KHG21834 protected against Aβ-induced neuronal cell death and mitochondrial damage, and significantly restored GSH levels and the activities of catalase, superoxide dismutase, and glutathione peroxidase, and also suppressed the production of reactive oxygen species and protein oxidation. These results imply that KHG21834 may play a role in cellular defense mechanisms against Aβ-induced oxidative stress in cultured cortical neurons. Furthermore, KHG21834 significantly attenuated the effects of Aβ treatment on levels of NF-κB, β-catenin, and GSK-3β proteins in cortical neurons. Taken together, our results suggest that the antioxidant effects of KHG21834 may result at least in part from its ability to regulate the NF-κB, β-catenin, and GSK-3β signaling pathways. To our knowledge, this is the first report showing that KHG21834 significantly attenuates Aβ25–35-induced oxidative stress in primary cortical neurons, and provides novel insights into KHG21834 as a possible therapeutic agent for the treatment of Aβ-mediated neurotoxicity involving oxidative stress.

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2012R1A1A2041484) and by a Student Research Grant from the University Of Ulsan College Of Medicine, Seoul, Korea.

Declaration of interest

The authors declare no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.