220
Views
13
CrossRef citations to date
0
Altmetric
Research Article

The influence of HPMC viscosity as FRC parameter on the release of low soluble drug from hydrophylic matrix tablets

, , &
Pages 343-347 | Received 08 Feb 2011, Accepted 23 Jul 2011, Published online: 14 Sep 2011
 

Abstract

The importance of functionality-related characteristics (FRC) of hydroxypropyl methylcellulose (HPMC) described in the pharmacopeia monograph can be evaluated only for selected formulation or technological process. The aim of our work was to investigate the influence of apparent viscosity as one of the FRC for two batches of the same HPMC grade on the release properties of diclofenac sodium from HPMC matrix tablets. Our results show that two batches of HPMC differ in viscosity significantly and as a consequence, the significant differences were observed in the release profiles as well. HPMC-B sample has higher viscosity and therefore higher average molecular weight, thus the erosion and drug release were slower compared to HPMC-A sample with lower apparent viscosity. It can be concluded that batch-to-batch viscosity variation of the same HPMC grade can lead to the different release profiles; therefore the specification limits of some FRC should be postulated during the development of each individual formulation. However, the viscosity interval as FRC can not be generalized, because it is different for different tablet compositions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.