115
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Design and statistical optimization of osmotically driven capsule based on push-pull technology

, , , &
Pages 515-524 | Received 10 May 2012, Accepted 29 Aug 2012, Published online: 04 Oct 2012
 

Abstract

In present investigation attempt was made to develop and statistically optimize osmotically active capsule tailor made from the concept of bilayer (push–pull) osmotic tablet technology. The capsule was comprised of active (drug) and push (osmogen) layer. Active layer was compressed in form of tablet by mixing known amount of drug and formulation excipients. Similarly push layer was made by compressing Mannitol with formulation excipients. Finally, both layers were packed in hard gelatin capsule having small aperture at top and coated with semipermeable membrane to form osmotically active capsule. Formulated and optimized capsules were characterized for Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetric (DSC), scanning electron microscopy, In-vitro drug release study and Release models and kinetics. Statistically optimized formulation showed good correlation between predicted and experimented results, which further confirms the practicability and validity of the model.

Acknowledgements

The authors are grateful to the management, HRPIPER, Shirpur for providing necessary facilities to carry out research work.

Declaration of interest

The authors report no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.