21
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ultrastructural and molecular analyzes of insulin-producing cells induced from human hepatoma cells

, , , , , , , & show all
Pages 193-200 | Received 27 Apr 2010, Accepted 24 May 2010, Published online: 22 Jul 2010
 

Abstract

Background aims. Diabetes type I is an autoimmune disease characterized by the destruction of pancreatic insulin-producing (beta-) cells and resulting in external insulin dependence for life. Islet transplantation represents a potential treatment for diabetes but there is currently a shortage of suitable organs donors. To augment the supply of donors, different strategies are required to provide a potential source of beta-cells. These sources include embryonic and adult stem cells as well as differentiated cell types. The main goal of this study was to induce the transdifferentiation (or conversion of one type cell to another) of human hepatoma cells (HepG2 cells) to insulin-expressing cells based on the exposure of HepG2 cells to an extract of rat insulinoma cells (RIN). Methods. HepG2 cells were first transiently permeabilized with Streptolysin O and then exposed to a cell extract obtained from RIN cells. Following transient exposure to the RIN extract, the HepG2 cells were cultured for 3 weeks. Results. Acquisition of the insulin-producing cell phenotype was determined on the basis of (i) morphologic and (ii) ultrastructural observations, (iii) immunologic detection and (iv) reverse transcription (RT)-polymerase chain reaction (PCR) analysis. Conclusions. This study supports the use of cell extract as a feasible method for achieve transdifferentiation of hepatic cells to insulin-producing cells.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.