709
Views
62
CrossRef citations to date
0
Altmetric
Original Article

In vitro and in vivo genotoxic effects of straight versus tangled multi-walled carbon nanotubes

, , , , , , , , , , , , & show all
Pages 794-806 | Received 17 Jun 2015, Accepted 16 Nov 2015, Published online: 26 Jan 2016
 

Abstract

Some multi-walled carbon nanotubes (MWCNTs) induce mesothelioma in rodents, straight MWCNTs showing a more pronounced effect than tangled MWCNTs. As primary and secondary genotoxicity may play a role in MWCNT carcinogenesis, we used a battery of assays for DNA damage and micronuclei to compare the genotoxicity of straight (MWCNT-S) and tangled MWCNTs (MWCNT-T) in vitro (primary genotoxicity) and in vivo (primary or secondary genotoxicity). C57Bl/6 mice showed a dose-dependent increase in DNA strand breaks, as measured by the comet assay, in lung cells 24 h after a single pharyngeal aspiration of MWCNT-S (1–200 μg/mouse). An increase was also observed for DNA strand breaks in lung and bronchoalveolar lavage (BAL) cells and for micronucleated alveolar type II cells in mice exposed to aerosolized MWCNT-S (8.2–10.8 mg/m3) for 4 d, 4 h/d. No systemic genotoxic effects, assessed by the γ-H2AX assay in blood mononuclear leukocytes or by micronucleated polychromatic erythrocytes (MNPCEs) in bone marrow or blood, were observed for MWCNT-S by either exposure technique. MWCNT-T showed a dose-related decrease in DNA damage in BAL and lung cells of mice after a single pharyngeal aspiration (1–200 μg/mouse) and in MNPCEs after inhalation exposure (17.5 mg/m3). In vitro in human bronchial epithelial BEAS-2B cells, MWCNT-S induced DNA strand breaks at low doses (5 and 10 μg/cm2), while MWCNT-T increased strand breakage only at 200 μg/cm2. Neither of the MWCNTs was able to induce micronuclei in vitro. Our findings suggest that both primary and secondary mechanisms may be involved in the genotoxicity of straight MWCNTs.

Acknowledgements

The authors would like to thank Dr. Lison at the Université catholique de Louvain (Belgium) for kindly providing us with tungsten carbide–cobalt mixture.

Declaration of interest

The authors report that they have no conflicts of interests. This study was funded by the Finnish Work Environment Fund (Grant nos. 109137 and 112248) and the European Commission under Grant agreement FP7-211464-2 (NANODEVICE). The work for the exposure characterization at NRCWE (K. I. Kling and K. A. Jensen) was conducted under the Danish Centre for Nanosafety (Grant agreement no. 20110092173/3) funded by the Danish Working Environment Research Fund.

Supplementary material available online

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.