709
Views
62
CrossRef citations to date
0
Altmetric
Original Article

In vitro and in vivo genotoxic effects of straight versus tangled multi-walled carbon nanotubes

, , , , , , , , , , , , & show all
Pages 794-806 | Received 17 Jun 2015, Accepted 16 Nov 2015, Published online: 26 Jan 2016

References

  • Alenius H, Catalán J, Lindberg H, Norppa H, Palomäki J, Savolainen K. 2014. Nanomaterials and human health. In: Vogel U, Savolainen K, Wu Q, van Tongeren M, Brouwer D, Berges M, eds. Handbook of Nanosafety-Measurement, Exposure and Toxicology. Waltham, MA: Academic Press, 78–152
  • Asakura M, Sasaki T, Sugiyama T, Takaya M, Koda S, Nagano K, et al. 2010. Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured Chinese hamster lung cells in comparison with chrysotile A fibers. J Occup Health 52:155–66
  • Baisch BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Oberdörster G, et al. 2014. Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol 11:5
  • Birkedal R, Shivachev B, Dimova L, Petrov O, Nikolova R, Mast J, et al. 2012. Deliverable 4.3: crystallitesize, mineralogical and chemical purity of nanogenotox nanomaterials. In: Jensen KA, Thieret N, eds. Final report: keyintrinsic physicochemical characteristics of nanogenotox nanomaterials, October, 72pp. Available at: http://www.nanogenotox.eu/files/PDF/Deliverables/d4.3_minchemcomposition.pdf. Accessed on 7 December 2016
  • Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, et al. 2014. Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE−/− mice and cultured endothelial cells. Toxicol Sci 138:104–16
  • Castranova V, Schulte PA, Zumwalde RD. 2013. Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers. Acc Chem Res 46:642–9
  • Catalán J, Suhonen S, Huk A, Dusinska M. 2014. Analysis of nanoparticle-induced DNA damage by the comet assay. In: Sierra LM, Gaivão I, eds. Genotoxicity and DNA Repair. New York, USA: Humana Press, 241–68
  • Chatterjee N, Yang J, Kim HM, Jo E, Kim PJ, Choi K, et al. 2014. Potential toxicity of differential functionalized multiwalled carbon nanotubes (MWCNT) in human cell line (BEAS2B) and Caenorhabditis elegans. J Toxicol Environ Health Part A 77:1399–408
  • Chen BT, Schwegler-Berry D, Mc Kinney W, Stone S, Cumpston JL, Friend S, et al. 2012. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization. Inhal Toxicol 24:798–820
  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. 2013. Carbon nanotubes: present and future commercial applications. Science 339:535–9
  • Donaldson K, Poland CA. 2012. Inhaled nanoparticles and lung cancer-what we can learn from conventional particle toxicology. Swiss Med Wkly 142:w13547
  • Elgrabli D, Floriani M, Abella-Gallart S, Meunier L, Gamez C, Delalain P, et al. 2008. Biodistribution and clearance of instilled carbon nanotubes in rat lung. Part Fibre Toxicol 5:20
  • Ema M, Imamura T, Suzuki H, Kobayashi N, Naya M, Nakanishi J. 2012. Evaluation of genotoxicity of multi-walled carbon nanotubes in a battery of in vitro and in vivo assays. Regul Toxicol Pharmacol 63:188–95
  • Ema M, Masumori S, Kobayashi N, Naya M, Endoh S, Maru J, et al. 2013. In vivo comet assay of multi-walled carbon nanotubes using lung cells of rats intratracheally instilled. J Appl Toxicol 33:1053–60
  • European Chemicals Agency (ECHA). 2015. Guidance on information requirements and chemical safety assessment. Chapter R.7a: End point specific guidance, version 4.1, October 2015. Available at: http://echa.europa.eu/documents/10162/13632/information_requirements_r7a_en.pdf. Accessed on 7 December 2016
  • Fenoglio I, Aldieri E, Gazzano E, Cesano F, Colonna M, Scarano D, et al. 2012. Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem Res Toxicol 25:74–82
  • Guiot C, Spalla O, Nikolova R, Shivachev B, Jensen KA. 2012. Deliverable 4.4: Determination of specific surface area of nanogenotox nanomaterials. In: Jensen KA, Thieret N, eds., Final report: Keyintrinsic physicochemical characteristics of nanogenotox nanomaterials, May, 35pp. Available at: http://www.nanogenotox.eu/files/PDF/Deliverables/d4%204_specific_surface_area.pdf. Accessed on 7 December 2016
  • Grosse Y, Loomis D, Guyton KZ, Lauby-Secretan B, El Ghissassi F, Bouvard V, et al. 2014. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol 15:1427–8
  • Harvey WR. 1987. User’s Guide for LSMLMW(PC-1version). Columbus, OH: Ohio State University
  • Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, et al. 2015. Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ Mol Mutagen 56:183–203
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, et al. 2010. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4:207–46
  • Kato T, Totsuka Y, Ishino K, Matsumoto Y, Tada Y, Nakae D, et al. 2013. Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems. Nanotoxicology 7:452–61
  • Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, et al. 2011. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicol 85:775–86
  • Kim JS, Sung JH, Choi BG, Ryu HY, Song KS, Shin JH, et al. 2014. In vivo genotoxicity evaluation of lung cells from Fischer 344 rats following 28 days of inhalation exposure to MWCNTs, plus 28 days and 90 days post-exposure. Inhal Toxicol 26:222–34
  • Kim JS, Sung JH, Song KS, Lee JH, Kim SM, Lee GH, et al. 2012. Persistent DNA damage measured by comet assay of Sprague Dawley rat lung cells after five days of inhalation exposure and 1 month post-exposure to dispersed multi-wall carbon nanotubes (MWCNTs) generated by new MWCNT aerosol generation system. Toxicol Sci 128:439–48
  • Koivisto AJ, Mäkinen M, Rossi EM, Lindberg HK, Miettinen M, Falck GCM, et al. 2011. Aerosol characterization and lung deposition of synthesized TiO2 nanoparticles for murine inhalation studies. J Nanopart Res 13:2949–61
  • Købler C, Poulsen SS, Saber AT, Jacobsen NR, Wallin H, Yauk CL, et al. 2015. Time-dependent subcellular distribution and effects of carbon nanotubes in lungs of mice. PLoS One 10:e0116481
  • Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, et al. 2007. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22:415–21
  • Lindberg HK, Falck GC, Catalán J, Koivisto AJ, Suhonen S, Järventaus H, et al. 2012. Genotoxicity of inhaled nanosized TiO(2) in mice. Mutat Res 745:58–64
  • Lindberg HK, Falck GC, Catalán J, Santonen T, Norppa H. 2010. Micronucleus assay for mouse alveolar Type II and Clara cells. Environ Mol Mutagen 51:164–72
  • Lindberg HK, Falck GC, Singh R, Suhonen S, Järventaus H, Vanhala E, et al. 2013. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Toxicology 313:24–37
  • Lison D, Carbonnelle P, Mollo L, Lauwerys R, Fubini B. 1995. Physicochemical mechanism of the interaction between cobalt metal and carbide particles to generate toxic activated oxygen species. Chem Res Toxicol 8:600–6
  • Lovell DP, Omori T. 2008. Statistical issues in the use of the comet assay. Mutagenesis 23:171–82
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, et al. 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112:468–81
  • Msiska Z, Pacurari M, Mishra A, Leonard SS, Castranova V, Vallyathan V. 2010. DNA double-strand breaks by asbestos, silica, and titanium dioxide: possible biomarker of carcinogenic potential? Am J Respir Cell Mol Biol 43:210–19
  • Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, et al. 2008. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29:427–33
  • Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. 2009. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci 110:442–8
  • Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, et al. 2011. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA 108:E1330–8
  • NIOSH. 2013. Occupational exposure to carbon nanotubes and nanofibers. In: Current Intelligence Bulletin 65. DHHS (NIOSH) Publication No. 2013–145
  • Nymark P, Catalán J, Suhonen S, Järventaus H, Birkedal R, Clausen PA, et al. 2013. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology 313:38–48
  • Nymark P, Jensen K, Suhonen S, Kembouche Y, Vippola M, Kleinjans J, et al. 2014. Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells. Part Fibre Toxicol 11:4
  • Nymark P, Wijshoff P, Cavill R, van Herwijnen M, Coonen ML, Claessen S, et al. 2015. Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells. Nanotoxicology 9:624–35
  • OECD. 2010. OECDTG487, In Vitro Mammalian Cell Micronucleus Test (MNvit). OECD Guidelines for the Testing of Chemicals. OECD TG 487. Available at: http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788. Accessed on 7 December 2016
  • OECD. 2014a. OECDTG489, In Vivo Mammalian Alkaline Comet Assay. OECD Guidelines for the Testing of Chemicals.[WorldCat]. OECD TG 489. Available at: http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788. Accessed on 7 December 2016
  • OECD. 2014b. OECDTG474, Mammalian Erythrocyte Micronucleus Test. OECD Guidelines for the Testing of Chemicals. OECD TG 474. Available at: http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788. Accessed on 7 December 2016
  • Patlolla AK, Hussain SM, Schlager JJ, Patlolla S, Tchounwou PB. 2010. Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice. Environ Toxicol 25:608–21
  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, et al. 2010. Mouse pulmonary dose-and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136–47
  • Porter D, Wolfarth MG, Chen BT, McKinney W, Hubbs AF, Battelli LA, et al. 2009. Pulmonary toxicity of inhaled multi-walled carbon nanotubes. The Toxicologist 108:A2193
  • Poulsen SS, Saber AT, Williams A, Andersen O, Købler C, Atluri R, et al. 2015. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284:16–32
  • Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A, et al. 2014. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol 11:59
  • Rydman EM, Ilves M, Koivisto AJ, Kinaret PA, Fortino V, Savinko TS, et al. 2014. Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation. Part Fibre Toxicol 11:48
  • Rydman EM, Ilves M, Vanhala E, Vippola M, Lehto MT, Kinaret PAS, et al. 2015. A single aspiration of rod-like carbon nanotubes induces asbestos-like pulmonary inflammation mediated in part by theIL-1 receptor. Toxicol Sci 147:140–55
  • Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC. 2009. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol 40:349–58
  • Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, et al. 2014. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 11:3
  • Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, et al. 2014. Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol 306:L170–82
  • Siegrist K, Reynolds S, Kashon M, Lowry D, Dong C, Hubbs A, et al. 2014. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Part Fibre Toxicol 11:6
  • Silva RM, Doudrick K, Franzi LM, Tee Sy C, Anderson DS, Wu Z, et al. 2014. Instillation versus inhalation of multiwalled carbon nanotubes: exposure-related health effects, clearance, and the role of particle characteristics. ACS Nano 8:8911–31
  • Sun JT, Armstrong MJ, Galloway SM. 1999. Rapid method for improving slide quality in the bone marrow micronucleus assay; an adapted cellulose column procedure. Mutat Res 439:121–6
  • Takagi A, Hirose A, Futakuchi M, Tsuda H, Kanno J. 2012. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci 103:1440–4
  • Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman PJ, et al. 2014. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro 28:60–9
  • Toyokuni S. 2013. Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv Drug Deliv Rev 65:2098–110
  • van Berlo D, Clift MJ, Albrecht C, Schins RP. 2012. Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity. Swiss Med Wkly 142:w13698
  • Westbrook AM, Wei B, Braun J, Schiestl RH. 2009. Intestinal mucosal inflammation leads to systemic genotoxicity in mice. Cancer Res 69:4827–34
  • Yamashita K, Yoshioka Y, Higashisaka K, Morishita Y, Yoshida T, Fujimura M, et al. 2010. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 33:276–80
  • Zeka A, Gore R, Kriebe ID. 2011. The two-stage clonal expansion model in occupational cancer epidemiology: results from three cohort studies. Occup Environ Med 68:618–24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.