214
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Neuroimmunomodulation and heat stress in poultry

, , &
Pages 493-504 | Received 28 Dec 2016, Accepted 10 May 2017, Published online: 23 Sep 2019

References

  • ADER, R. (2000) On the Development of Psychoneuroimmunology. European Journal of Pharmacology 405: 167–176.
  • ADER, R., COHEN, N. and FELTEN, D. (1995) Psychoneuroimmunology: Interactions between the Nervous System and the Immune System. The Lancet 345: 99–103.
  • BAARENDSE, P.J.J., DEBONNE, M., DECUYPERE, E., KEMP, B. and VAN DEN BRAND, H. (2007) Ontogeny of avian thermoregulation from a neural point of view. World's Poultry Science Journal 63: 267–276.
  • BANFIELD, M.J., TEN DOESCHATE, R.A.H.M. and FORBES, J. M. (1998) Effect of Whole Wheat and Heat Stress on a Coccidial Infection in Broiler Chickens. British Poultry Science 39: 25–26.
  • BÉDÉCARRATS, G.Y., BAXTER, M. and SPARLING, B. (2016) An updated model to describe the neuroendocrine control of reproduction in chickens. General and Comparative Endocrinology 227: 58–63.
  • BERCZI, I. (1998) The Stress Concept and Neuroimmunoregulation in Modern Biology. Annals of the New York Academy of Sciences 851: 3–12.
  • BICEGO, K.C., BARROS, R.C. and BRANCO, L.G. (2007) Physiology of temperature regulation: comparative aspects. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 147: 616–639.
  • BROWN-BORG, H.M. and EDENS, F.W. (1992) In Vivo Neurotoxin Administration Alters Immune Responses in Chickens (Gallus Domesticus). Comparative Biochemistry and Physiology C. 1: 177–183.
  • CALEFI, A.S., HONDA, B.T.B., COSTOLA-DE-SOUZA, C., DE SIQUEIRA, A., NAMAZU, L.B., QUINTEIRO-FILHO, W.M., FONSECA, J.G.S., ALOIA, T.P.A. and PALERMO-NETO, J. (2014) Effects of long-term heat stress in an experimental model of avian necrotic enteritis. Poultry Science 93: 1344–1353.
  • CALEFI, A.S., FONSECA, J.G.S., COHN, D.W.H., HONDA, B.T.B., COSTOLA-DE-SOUZA, C., TSUGIYAMA, L.E., QUINTEIRO-FILHO, W.M., FERREIRA, A.J.P. and PALERMO-NETO, J. (2016a) Gut-Brain Axis Interactions during Heat Stress and Avian Necrotic Enteritis. Poultry Science 95: 1005–1014.
  • CALEFI, A.S., QUINTEIRO-FILHO, W.M., FUKUSHIMA, A.R., CRUZ, D.S.G., SIQUEIRA, A., SALVAGNI, F.A., NAMAZU, L.B., MASSOCO, C.S.G., PIANTINO-FERREIRA, A.J. and PALERMO NETO, J. (2016b) Dexamethasone Regulates Macrophage and CD4+CD25+ Cell Numbers in the Chicken Spleen. Brazilian Journal of Poultry Science 18: 93–100.
  • CALEFI, A.S., SIQUEIRA, A., NAMAZU, L.B., COSTOLA-DE-SOUZA, C., HONDA, B.B.T., FERREIRA, A.J.P., QUINTEIRO-FILHO, W.M., DA SILVA FONSECA, J.G. and PALERMO-NETO, J. (2016c) Effects of heat stress on the formation of splenic germinal centres and immunoglobulins in broilers infected by Clostridium perfringens type A. Veterinary Immunology and Immunopathology 171: 38–46.
  • CHANDRATILLEKE, D., HÀLA, K. and MARSH, J.A. (1996) Effects of in Vivo Thyroid Hormone Treatment on the Expression of Interleukin-2 Receptors on Avian Splenocytes. International Journal of Immunopharmacology 3: 203–210.
  • CHEN, P., CHRISTINE, V.H., DANIEL, L. and CHIEN, L. (2012) Central Urocortin 3 and Type 2 Corticotropin-Releasing Factor Receptor in the Regulation of Energy Homeostasis: Critical Involvement of the Ventromedial Hypothalamus. Frontiers in Endocrinology 3: 180.
  • CIRIACO, E., RICCI, A., BRONZETTI, E., MAMMOLA, C.L., GERMANA, G. and VEGA, J.A. (1995) Age-Related Changes of the Noradrenergic and Acetylcholinesterase Reactive Nerve Fibres Innervating the Pigeon Bursa of Fabricius. Annals of Anatomy 177: 237–242.
  • CORDIER, A. (1969) Innervation of the Bursa of Fabricius during Embryobenesis and Adult Life. L'innervation de La Bourse de Fabricius Durant L'embryogenèse et La Vie Adulte 73: 38–47.
  • COSTA-PINTO, F.A. and PALERMO-NETO, J. (2010) Neuroimmune Interactions in Stress. Neuroimmunomodulation 17: 196–199.
  • DAWKINS, M.S., CHRISTL, A.D. and TRACEY, A.J. (2004) Chicken Welfare Is Influenced More by Housing Conditions than by Stocking Density. Nature 427: 342–344.
  • DENNO, K.M., MCCORKLE, F.M. and TAYLOR, R.L. (Jr) (1994) Catecholamines Modulate Chicken Immunoglobulin M and Immunoglobulin G Plaque-Forming Cells. Poultry Science 73: 1858–1866.
  • DEVICHE, P. and CORTEZ, L. (2005) Androgen Control of Immunocompetence in the Male House Finch, Carpodacus Mexicanus Müller. Journal of Experimental Biology 208: 1287–1295.
  • DOKLADNY, K.L, POPE, L.M. and THOMAS, Y.M. (2006) Physiologically Relevant Increase in Temperature Causes an Increase in Intestinal Epithelial Tight Junction Permeability. American Journal of Physiology. Gastrointestinal and Liver Physiology 290: G204–212.
  • DUFFY, D.L., BENTLEY, G.E., DRAZEN, D.L. and BALL, G.F.B. (2000) Effects of Testosterone on Cell-Mediated and Humoral Immunity in Non-Breeding Adult European Starlings. Behavioral Ecology 11: 654–662.
  • EL-FAR, A.A., MASHALY, M.M. and KAMAR, G.A. (1994) Bursectomy and in Vitro Response of Adrenal Gland to Adrenocorticotropic Hormone and Testis to Human Chorionic Gonadotropin in Immature Male Chickens. Poultry Science 73: 113–117.
  • ETCHES, R.J., JOHN, T.M. and GIBBINS, A.M.V. (2008) Behavioural, Physiological, Neuroendocrine and Molecular Responses to Heat Stress. Poultry Production in Hot Climates, pp. 31–66.
  • FOWLES, J.R., FAIRBROTHER, A., FIX, M., SCHILLER, S. and KERKVLIET, N.I. (1993) Glucocorticoid Effects on Natural and Humoral Immunity in Mallards. Developmental and Comparative Immunology 17: 165–177.
  • FRANCHINI, A. and OTTAVIANI, E. (1999) Immunoreactive POMC-Derived Peptides and Cytokines in the Chicken Thymus and Bursa of Fabricius Microenvironments: Age-Related Changes. Journal of Neuroendocrinology 9: 685–692.
  • GARRIGA, C., HUNTER, R.R., AMAT, C., PLANAS, J.M., MITCHELL, M.A. and MORETO, M. (2006) Heat Stress Increases Apical Glucose Transport in the Chicken Jejunum. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 290: R195–201.
  • GEHAD, A.E., LILLEHOJ, H.S., HENDRICKS III, G.L. and MASHALY, M.M. (2002) Initiation of Humoral Immunity. I. The Role of Cytokines and Hormones in the Initiation of Humoral Immunity Using T-Independent and T-Dependent Antigens. Developmental and Comparative Immunology 26: 751–759.
  • GILLIES, G.E., LINTON, E.A. and LOWRY, P.J. (1982) Corticotropin Releasing Activity of the New CRF Is Potentiated Several Times by Vasopressin. Nature 299: 355–357.
  • GLASER, R. and KIECOLT-GLASER, J.K. (2005) Stress-Induced Immune Dysfunction: Implications for Health. Nature Review in Immunology 5: 243–251.
  • GLEESON, M. and BRACKENBURY, J.H. (1984) Effects of Body Temperature on Ventilation, Blood Gases and Acid-Base Balance in Exercising Fowl. Quarterly Journal of Experimental Physiology 69: 61–72.
  • GLICK, B. (1984) Interrelation of the Avian Immune and Neuroendocrine Systems. Journal of Experimental Zoology 3: 671–682.
  • GLICK, B. (1991) Historical Perspective: The Bursa of Fabricius and Its Influence on B-Cell Development, Past and Present. Veterinary Immunology and Immunopathology 30: 3–12.
  • GOMES, A.V.S., QUINTEIRO-FILHO, W.M., RIBEIRO, A., FERRAZ-DE-PAULA, V., PINHEIRO, M.L., BASKEVILLE, E., AKAMINE, A.T., ASTOLFI-FERREIRA, C.S., FERREIRA, A.J.P. and PALERMO-NETO, J. (2014) Overcrowding Stress Decreases Macrophage Activity and Increases Salmonella Enteritidis Invasion in Broiler Chickens. Avian Pathology 43: 82–90.
  • HADDAD, E.E. and MASHALY, M.M. (1990) Effect of Thyrotropin-Releasing Hormone, Triiodothyronine, and Chicken Growth Hormone on Plasma Concentrations of Thyroxine, Triiodothyronine, Growth Hormone, and Growth of Lymphoid Organs and Leukocyte Populations in Immature Male Chickens. Poultry Science 69: 1094–1102.
  • HADDAD, E.E. and MASHALY, M.M. (1991) Chicken Growth Hormone, Triiodothyronine and Thyrotropin Releasing Hormone Modulation of the Levels of Chicken Natural Cell-Mediated Cytotoxicity. Developmental and Comparative Immunology 15: 65–71.
  • HECKERT, R.A., ESTEVEZ, I., RUSSEK-COHEN, E. and PETTIT-RILEY, R. (2002) Effects of Density and Perch Availability on the Immune Status of Broilers. Poultry Science 81: 451–457.
  • HENDRICKS, G.L. and MASHALY, M.M. (1998) Effects of Corticotropin Releasing Factor on the Production of Adrenocorticotropic Hormone by Leukocyte Populations. British Poultry Science 39: 123–127.
  • HENDRICKS III, G.L., SIEGEL, H.S. and MASHALY, M.M. (1991) Ovine Corticotropin-Releasing Factor Increases Endocrine and Immunologic Activity of Avian Leukocytes in Vitro. Proceedings of the Society for Experimental Biology and Medicine 196: 390–395.
  • HILLHOUSE, E.W. and GRAMMATOPOULOS, D.K. (2006) The Molecular Mechanisms Underlying the Regulation of the Biological Activity of Corticotropin-Releasing Hormone Receptors: Implications for Physiology and Pathophysiology. Endocrine Reviews 27: 260–286.
  • HONDA, B.T.B., CALEFI, A.S., COSTOLA-DE-SOUZA, C., QUINTEIRO-FILHO, W.M., DA SILVA FONSECA, J.G., DE PAULA, V.F. and PALERMO-NETO, J. (2015) Effects of Heat Stress on Peripheral T and B Lymphocyte Profiles and IgG and IgM Serum Levels in Broiler Chickens Vaccinated for Newcastle Disease Virus. Poultry Science 94: 2375–2381.
  • HUMPHREY, T. (2006) Are Happy Chickens Safer Chickens? Poultry Welfare and Disease Susceptibility. British Poultry Science 47: 379–391.
  • JOHNSON, J.D., CAMPISI, J., SHARKEY, C.M., KENNEDY, S.L., NICKERSON, M., GREENWOOD, B.N. and FLESHNER, M. (2005) Catecholamines Mediate Stress-Induced Increases in Peripheral and Central Inflammatory Cytokines. Neuroscience 135: 1295–1307.
  • KAISER, P., WU, Z., ROTHWELL, L., FIFE, M., GIBSON, M., POH, T.Y., SHINI, A., BRYDEN, W. and SHINI, S. (2009) Prospects for Understanding Immune-Endocrine Interactions in the Chicken. General and Comparative Endocrinology 163: 83–91.
  • KANG, Z., BÉDÉCARRATS, G.Y. and ZADWORNY, D. (2007) Expression patterns of the prolactin receptor gene in chicken lymphoid tissues during embryogenesis and posthatch period. Poultry Science 86: 2404–2412.
  • KARROW, N.A. (2006) Activation of the hypothalamic-pituitary-adrenal axis and autonomic nervous system during inflammation and altered programming of the neuroendocrine-immune axis during fetal and neonatal development: Lessons learned from the model inflammagen, lipopolysaccharide. Brain, Behavior, and Immunity 20: 144–158.
  • LAMBERT, G.P., GISOLFI, C.V., BERG, D.J., MOSELEY, P.L., OBERLEY, L.W. and KREGEL, K.C. (2002) Selected Contribution: Hyperthermia-Induced Intestinal Permeability and the Role of Oxidative and Nitrosative Stress. Journal of Applied Physiology 92: 1750–1761; discussion 1749.
  • LARA, L.J. and ROSTAGNO, M.H. (2013) Impact of heat stress on poultry production. Animals 3: 356–369.
  • LICINIO, J. and FROST, P. (2000) The Neuroimmune-Endocrine Axis: Pathophysiological Implications for the Central Nervous System Cytokines and Hypothalamus-Pituitary-Adrenal Hormone Dynamics. Brazilian Journal of Medical and Biological Research 33: 1141–1148.
  • LUKAS, N.W., MCCORKLE, F.M. and TAYLOR, R.L. (Jr) (1987) Monoamines Suppress the Phytohemagglutinin Wattle Response in Chickens. Developmental and Comparative Immunology 11: 759–768.
  • MARKOWSKA, M., MAJEWSKI, P.M. and SKWARŁO-SOŃTA, K. (2017) Avian biological clock-Immune system relationship. Developmental & Comparative Immunology 66: 130–138.
  • MARSH, J.A., LAUTERIO, T.J. and SCANES, C.G. (1984) Effects of Triiodothyronine Treatments on Body and Organ Growth and the Development of Immune Function in Dwarf Chickens. Proceedings of the Society of Experimental Biology Medicine. 1: 82–91.
  • MARSH, J.A. and SCANES, C.G. (1994) Neuroendocrine-Immune Interactions. Poultry Science 73: 1049–1061.
  • MASHALY, M.M., HENDRICKS 3rd, G.L., KALAMA, M.A., GEHAD, A.E., ABBAS, A.O. and PATTERSON, P.H. (2004) Effect of Heat Stress on Production Parameters and Immune Responses of Commercial Laying Hens. Poultry Science 83: 889–894.
  • MASHALY, M.M., TROUT, J.M. and HENDRICKS 3rd, G.L. (1993) The Endocrine Function of the Immune Cells in the Initiation of Humoral Immunity. Poultry Science 72: 1289–1293.
  • MASHALY, M.M., TROUT, J.M., HENDRICKS III, G., AL-DOKHI, L.M. and GEHAD, A. (1998) The Role of Neuroendocrine Immune Interactions in the Initiation of Humoral Immunity in Chickens. Domestic Animal Endocrinology 15: 409–422.
  • MCCORKLE, F.M., TAYLOR, R.L., DENNO, K.M. and JABE, J.M. (1990) Monoamines Alter in Vitro Migration of Chicken Leukocytes. Developmental and Comparative Immunology 14: 85–93.
  • MCCORKLE, F.M. and TAYLOR, R.L. (Jr) (1994) Continuous Administration of Dopamine Alters Cellular Immunity in Chickens. Comparative Biochemistry and Physiology - C Pharmacology Toxicology and Endocrinology 109: 289–293.
  • MENEZES, A.G., NÄÄS, I.A. and BARACHO, M.S. (2010) Identification of critical points of thermal environment in broiler production. Revista Brasileira de Ciência Avícola 12: 21–29.
  • MOTOBU, M., EL-ABASY, M., NA, K.J., VAINIO, O., TOIVANEN, P., HIROTA, Y. (2003) Effects of 6-Hydroxydopamine on the Development of the Immune System in Chickens. Journal of Veterinary Medical Science 65: 35–42.
  • MOURA, D.J., VERCELLINO, R.A., SANTOS, J.P.A. and VALE, M.M. (2015) Heat stress impact on weight gain in broiler chickens: a meta-analytical study of environmental factor that impact production losses. In ASABE 1st Climate Change Symposium: Adaptation and Mitigation Conference Proceedings (pp. 1–3). American Society of Agricultural and Biological Engineers.
  • NANCE, D.M. and SANDERS, V.M. (2007) Autonomic Innervation and Regulation of the Immune System (1987-2007). Brain Behaviour and Immunology 21: 736–745.
  • OLIVER, S.R., PHILLIPS, N., NOVOSAD, V.L., BAKOS, M.P., TALBERT, E.E. and CLANTON, T.L. (2012) Hyperthermia Induces Injury to the Intestinal Mucosa in the Mouse: Evidence for an Oxidative Stress Mechanism. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 302: R845–R853.
  • OTTINGER, M.A. and LAVOIE, E. (2007) Neuroendocrine and immune characteristics of aging in avian species. Cytogenetic and Genome Research 117: 352–357.
  • PIESTUN, Y., DRUYAN, S., BRAKE, J. and YAHAV, S. (2013) Thermal manipulations during broiler incubation alter performance of broilers to 70 days of age. Poultry Science 92: 1155–1163.
  • PINTEA, V., CONSTANTINESCU, G.M. and RADU, C. (1967) Vascular and Nervous Supply of Bursa of Fabricius in the Hen. Acta Veterinaria Academiae Scientiarum Hungaricae 17: 263–268.
  • POST, J., REBEL, J.M. and TER HUURNE, A.A. (2003) Physiological Effects of Elevated Plasma Corticosterone Concentrations in Broiler Chickens. An Alternative Means by Which to Assess the Physiological Effects of Stress. Poultry Science 82: 1313–1318.
  • QUINTEIRO-FILHO, W.M., RIBEIRO, A., FERRAZ-DE-PAULA, V., PINHEIRO, M.L., SAKAI, M., SA, L.R., FERREIRA, A.J. and PALERMO-NETO, J. (2010) Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Science 89: 1905–1914.
  • QUINTEIRO-FILHO, W.M., GOMES, A.V.S., PINHEIRO, M.L., RIBEIRO, A., FERRAZ-DE-PAULA, V., ASTOLFI-FERREIRA, C.S., FERREIRA, A.J.P. and PALERMO-NETO, J. (2012a) Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella enteritidis. Avian Pathology 41: 421–427.
  • QUINTEIRO-FILHO, W.M., RODRIGUES, M.V, RIBEIRO, A., FERRAZ-DE-PAULA, V., PINHEIRO, M.L., SA, L.R., FERREIRA, A.J. and PALERMO-NETO, J. (2012b) Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens: role of acute HPA axis activation. Journal of Animal Science 90: 1986–1994.
  • QUINTEIRO-FILHO, W.M., CALEFI, A.S., CRUZ, D.S.G., ALOIA, T.P.A., ZAGER, A., ASTOLFI-FERREIRA, C.S., FERREIRA, A.J.P. and PALERMO-NETO, J. (2017) Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis. Veterinary Immunology and Immunopathology 186: 19–28.
  • RICHARD, D., QIN, L. and TIMOFEEVA, E. (2002) The Corticotropin-Releasing Factor Family of Peptides and CRF Receptors: Their Roles in the Regulation of Energy Balance. European Journal of Pharmacology 440: 189–197.
  • ROZENBOIM, I., TAKO, E., GAL-GARBER, O., PROUDMAN, J.A. and UNI, Z. (2007) The Effect of Heat Stress on Ovarian Function of Laying Hens. Poultry Science 86: 1760–1765.
  • RYU, S.T., PARK, B.S., BANG, H.T., KANG, H.K. and HWANGBO, J. (2016) Effects of anti-heat diet and inverse lighting on growth performance, immune organ, microorganism and short chain fatty acids of broiler chickens under heat stress. Journal of Environmental Biology 37: 185.
  • SEEBACHER, F. (2009) Responses to temperature variation: integration of thermoregulation and metabolism in vertebrates. Journal of Experimental Biology 212: 2885–2891.
  • SELYE, H. (1955) Stress and Disease. Science 122: 625–631.
  • SELYE, H. (1936) A Syndrome Produced by Diverse Nocuous Agents. Nature 138: 32.
  • SHINI, S., HUFF, G.R., SHINI, A. and KAISER, P. (2010) Understanding Stress-Induced Immunosuppression: Exploration of Cytokine and Chemokine Gene Profiles in Chicken Peripheral Leukocytes. Poultry Science 89: 841–851.
  • SHINI, S., KAISER, P., SHINI, A. and BRYDEN, W.L. (2008) Biological Response of Chickens (Gallus Gallus Domesticus) Induced by Corticosterone and a Bacterial Endotoxin. Comparative Biochemistry and Physiology Part B 149: 324–333.
  • SHINI, S., SHINI, A. and HUFF, G.R. (2009) Effects of Chronic and Repeated Corticosterone Administration in Rearing Chickens on Physiology, the Onset of Lay and Egg Production of Hens. Physiology and Behavior 98: 73–77.
  • SHINI, S. and KAISER, P. (2009) Effects of Stress, Mimicked by Administration of Corticosterone in Drinking Water, on the Expression of Chicken Cytokine and Chemokine Genes in Lymphocytes. Stress 12: 388–399.
  • SKWARLO-SONTA, K. (1992) Prolactin as an Immunoregulatory Hormone in Mammals and Birds. Immunology Letters 33: 105–121.
  • SOLEIMANI, A.F., ZULKIFLI, I., OMAR, A.R. and RAHA, A.R. (2011) Physiological Responses of 3 Chicken Breeds to Acute Heat Stress. Poultry Science 90: 1435–1440.
  • ST-PIERRE, N.R., COBANOV, B. and SCHNITKEY, G. (2003) Economic Losses from Heat Stress by US Livestock Industries. Journal of Dairy Science 86: E52–77.
  • STAR, L., NIEUWLAND, M.G., KEMP, B. and PARMENTIER, H.K. (2007) Effect of Single or Combined Climatic and Hygienic Stress on Natural and Specific Humoral Immune Competence in Four Layer Lines. Poultry Science 86: 1894–1903.
  • TROUT, J.M. and MASHALY, M.M. (1994) The Effects of Adrenocorticotropic Hormone and Heat Stress on the Distribution of Lymphocyte Populations in Immature Male Chickens. Poultry Science 73: 1694–1698.
  • TROUT, J.M. and MASHALY, M.M. (1995) Effects of in Vitro Corticosterone on Chicken T- and B-Lymphocyte Proliferation. British Poultry Science 36: 813–820.
  • TSIOURIS, V., GEORGOPOULOU, I., BATZIOS, C., PAPPAIOANNOU, N., DUCATELLE, R. and FORTOMARIS, P. (2015a) High Stocking Density as a Predisposing Factor for Necrotic Enteritis in Broiler Chicks. Avian Pathology 44: 59–66.
  • TSIOURIS, V., GEORGOPOULOU, I., BATZIOS, C., PAPPAIOANNOU, N., DUCATELLE, R. and FORTOMARIS, P. (2015b) The Effect of Cold Stress on the Pathogenesis of Necrotic Enteritis in Broiler Chicks. Avian Pathology 44: 430–435.
  • VARASTEH, S., BRABER, S., AKBARI, P., GARSSEN, J. and FINK-GREMMELS, J. (2015) Differences in Susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PloS one 10: e0138975.
  • YAHAV, S. and BRAKE, J. (2014) Chick Embryogenesis: A Unique Platform to Study the Effects of Environmental Factors on Embryo Development. Journal of Stem Cells 9: 17.
  • ZENTEL, H.J., NOHR, D., ALBRECHT, R., JEURISSEN, S.H., VAINIO, O. and WEIHE, E. (1991) Peptidergic Innervation of the Bursa Fabricii: Interrelation with T-Lymphocyte Subsets. International Journal of Neuroscience 59: 177–188.
  • ZENTEL, H.J. and WEIHE, E. (1991) The Neuro-B Cell Link of Peptidergic Innervation in the Bursa Fabricii. Brain, Behavior, and Immunity 5: 132–147.
  • ZIEGLER, D.R. and HERMAN, J.P. (2002) Neurocircuitry of Stress Integration: Anatomical Pathways Regulating the Hypothalamo-Pituitary-Adrenocortical Axis of the Rat. Integrative and Comparative Biology 42: 541–551.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.