194
Views
10
CrossRef citations to date
0
Altmetric
VIBRATIONAL SPECTROSCOPY

Detection of Vibrational Spectroscopic Biomarkers of the Effect of Gold Nanoparticles on Wheat Seedlings Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

, , &
Pages 2271-2294 | Received 27 Nov 2017, Accepted 28 Dec 2017, Published online: 25 Jun 2018

References

  • Acemi, A., S. Türker-Kaya, and F. Özen. 2016. FT-IR spectroscopy based evaluation of changes in primary metabolites of Amsonia orientalis after in vitro 6-benzylaminopurine treatment. Not. Bot. Horti. Agrobo. 44:209–14.
  • Arora, S., P. Sharma, S. Kumar, R. Nayan, P. K. Khanna, and M. G. H. Zaidi. 2012. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 66:303–10. doi:10.1007/s10725-011-9649-z.
  • Arrondo, J. L. R., and F. M. Govi. 1999. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog. Biophys. Mol. Biol. 72:367–405. doi:10.1016/s0079-6107(99)00007-3.
  • Bakand, S., and A. Hayes. 2016. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int. J. Mol. Sci. 17:929–46. doi:10.3390/ijms17060929.
  • Barrena, R., E. Casals, J. Colón, X. Font, A. Sánchez, and V. Puntes. 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere. 75:850–57. doi:10.1016/j.chemosphere.2009.01.078.
  • Behari, J. 2010. Principle of nanoscience: An overview. Indian J. Exp. Biol. 48:1008–1019.
  • Dan, Y., W. Zhang, R. Xue, X. Ma, C. Stephan, and H. Shi. 2015. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma−mass spectrometry analysis. Environ. Sci. Technol. 49:3007–3014. doi:10.1021/es506179e.
  • Farcaș, A., C. Iacoviță, E. Vințeler, V. Chiș, R. Știufiuc, and C. M. Lucaciu. 2016. The influence of molecular structure modifications on vibrational properties of some beta blockers: A combined Raman and DFT study. J. Spectroscopy. 1–9. doi:10.1155/2016/3137140.
  • Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241:20–22. doi:10.1038/physci241020a0.
  • Feichtmeier, N. S., P. Walther, and K. Leopold. 2015. Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ. Sci. Pollut. Res. Int. 22:8549–58. doi:10.1007/s11356-014-4015-0.
  • Gao, F., F. Hong, C. Liu, L. Zheng, M. Su, X. Wu, F. Yang, C. Wu, and P. Yang. 2006. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of rubisco-rubisco activase. Biol. Trace Elem. Res. 111:239–53.
  • Giese, A. T., and C. S. French. 1955. The analysis of overlapping spectral absorption bands by derivative spectrophotometry. Appl. Spectroscop. 9:78–96. doi:10.1366/000370255774634089.
  • Giraldo, J. P., M. P. Landry, S. M. Faltermeier, T. P. McNicholas, N. M. Iverson, A. A. Boghossian, N. F. Reuel, A. J. Hilmer, F. Sen, J. A. Brew, and M. S. Strano. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13:400–408. doi:10.1038/nmat3890.
  • Gopinath, K., S. Gowri, V. Karthika, and A. Arumugam. 2014. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J. Nanostruct. Chem. 4:1–11. doi:10.1007/s40097-014-0115-0.
  • Govorov, A. O., and I. Carmeli. 2007. Hybrid structures composed of photosynthetic system and metal nanoparticles: Plasmon enhancement effect. Nano. Lett. 7:620–25. doi:10.1021/nl062528t.
  • Grasel, F. S., M. F. Ferrão, and C. R. Wolf. 2016. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochim. Acta A. 153:94–101. doi:10.1016/j.saa.2015.08.020.
  • Gunjan, B., M. G. H. Zaidi, and A. Sandeep. 2014. Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J. Plant Biochem. Physiol. 2:133. doi:10.4172/2329-9029.1000133.
  • Gurunathan, S., J. W. Han, J. H. Park, and J. Kim. 2014. A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res. Lett. 9:248–59. doi:10.1186/1556-276x-9-248.
  • Heiligtag, F. J., and M. Niederberger. 2013. The fascinating world of nanoparticles research. Mater. Today. 16:262–71. doi:10.1016/j.mattod.2013.07.004.
  • Hong, F., F. Yang, C. Liu, Q. Gao, Z. Wan, F. Gu, C. Wu, Z. Ma, J. Zhou, and P. Yang. 2005a. Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biol. Trace. Elem. Res. 104:249–60.
  • Hong, F., J. Zhou, C. Liu, F. Yang, C. Wu, L. Zheng, and P. Yang. 2005b. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 105:269–79.
  • Husti, A., M. Cantor, R. Stefan, M. Miclean, M. Roman, I. Neacsu, I. Contiu, K. Magyari, and M. Baia. 2016 Assessing the indoor pollutants effect on ornamental plants leaves by FT-IR spectroscopy. Acta Phys. Pol. A. 129:142–49. doi:10.12693/aphyspola.129.142.
  • Jia, H., J. Zeng, W. Song, J. An, and B. Zhao. 2006. Preparation of silver nanoparticles by photo-reduction for surface-enhanced Raman scattering. Thin Solid Films. 496:281–87. doi:10.1016/j.tsf.2005.08.359.
  • Kačuráková, M., P. Capeka, V. Sasinkova, N. Wellner, and A. Ebringerová. 2000. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 43:195–203.
  • Khan, I., K. Saeed, and I. Khan. 2017. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. doi:10.1016/j.arabjc.2017.05.011.
  • Kong, F., J. Zhang, R. Li, Z. Wang, W. Wang, and W. Wang. 2017. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22:1445. doi:10.3390/molecules22091445.
  • Krzesłowska, M. 2011. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 33:35–51. doi:10.1007/s11738-010-0581-z.
  • Kumar, V., P. Guleria, V. Kumar, and S. K. Yadav. 2013. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ. 461:462–68. doi:10.1016/j.scitotenv.2013.05.018.
  • Lahlali, R., Y. Jiang, S. Kumar, C. Karunakaran, X. Liu, F. Borondics, E. Hallin, and R. Bueckert. 2014. ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance. Front. Plant Sci. 2014. doi:10.3389/fpls.2014.00747.
  • Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382. doi:10.1016/0076-6879(87)48036-1.
  • Lichtenthaler, H. K., and C. Buschmann. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Current protocols in food analytical chemistry. John Wiley and Sons, Inc. F:F4–F4.3.
  • Lin, C., B. Fugetsu, Y. Su, and F. Watari. 2009. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater. 170:578–83. doi:10.1016/j.jhazmat.2009.05.025.
  • Linglan, M., L. Chao, Q. Chunxiang, Y. Sitao, and L. Jie. 2008. Fengqing G, Fashui H. Rubisco activase mRNA expression in spinach: Modulation by nanoanatase treatment. Biol. Trace Elem. Res. 122:168–78. doi:10.1007/s12011-007-8069-4.
  • Ma, X., J. Geiser-Lee, Y. Deng, and A. Kolmakov. 2010. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ. 408:3053–61. doi:10.1016/j.scitotenv.2010.03.031.
  • Mackowski, S., S. Wo1rmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bra1uchle. 2008. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. Nano. Lett. 8:2558–64. doi:10.1021/nl072854o.
  • Mishra, K. B., and R. Gopal. 2008. Detection of nickel-induced stress using laser-induced fluorescence signatures from leaves of wheat seedlings. Int. J. Remote Sens. 29:157–73. doi:10.1080/01431160701280975.
  • Nair, R., S. H. Varghese, B. G. Nair, T. Maekawa, Y. Yoshida, and D. S. Kumar. 2010. Nanoparticulate material delivery to plants. Plant Sci. 179:154–63. doi:10.1016/j.plantsci.2010.04.012.
  • Navarro, E., A. Baun, R. Behra, N. B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P. H. Santschi, and L. Sigg. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–86. doi:10.1007/s10646-008-0214-0.
  • Nghiem, T. H. L., T. H. La, X. H. Vu, V. H. Chu, T. H. Nguyen, Q. H. Le, E. Fort, Q. H. Do, and H. N. Tran. 2010. Synthesis, capping and binding of colloidal gold nanoparticles to proteins. Adv. Nat. Sci.-Nanosci. 1:025009–14. doi:10.1088/2043-6254/1/2/025009.
  • Noji, T., C. Kamidaki, K. Kawakami, J. Shen, T. Kajino, Y. Fukushima, T. Sekitoh, and S. Itoh. 2011. Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in sba. Langmuir 27:705–13. doi:10.1021/la1032916.
  • Pandey, J. K., and R. Gopal. 2011. Laser-induced chlorophyll fluorescence and reflectance spectroscopy of cadmium treated Triticum aestivum L. plants. Spectroscopy 26:129–39. doi:10.1155/2011/640232.
  • Pandey, J. K., G. Dubey, and R. Gopal. 2015. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy. J. Photoch. Photobiol. B. 151:297–305. doi:10.1016/j.jphotobiol.2014.08.014.
  • Pandey, J. K., P. Srivastava, R. S. Yadav, and R. Gopal. 2012. Chlorophyll fluorescence spectra as an indicator of X-Ray +EMS-induced phytotoxicity in safflower. Spectroscopy: An International Journal 27:207–14. doi:10.1155/2012/951064.
  • Park, J. W., and J. S. Shumaker-Parry. 2014. Structural study of citrate layers on gold nanoparticles: Role of intermolecular interactions in stabilizing nanoparticles, J. Am. Chem. Soc. 136:1907–21. doi:10.1021/ja4097384.
  • Parrotta, L., G. Guerriero, K. Sergeant, G. Cai, and J. Hausman. 2015. Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: Differences in the response mechanisms. Front. Plant Sci. 6:133. doi:10.3389/fpls.2015.00133.
  • Popescu, C. M., P. Navi, M. I. Placencia Peña, and M. C. Popescu. 2018. Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis. Spectrochim. Acta A. 191:405–12. doi:10.1016/j.saa.2017.10.045.
  • Printz, B., S. Lutts, J. Hausman, and K. Sergeant. 2016. Copper trafficking in plants and its implication on cell wall dynamics. Front. Plant Sci. 7:601. doi:10.3389/fpls.2016.00601.
  • Raliya, R., and J. C. Tarafdar. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric. Res. 2:48–57. doi:10.1007/s40003-012-0049-z.
  • Rani, M., L. Moudgil, B. Singh, A. Kaushal, A. Mittal, G. S. S. Saini, S. K. Tripathi, G. Singh and A. Kaura. 2016. Understanding the mechanism of replacement of citrate from the surface of gold nanoparticles by amino acids: A theoretical and experimental investigation and their biological application. RSC Adv. 6:17373–383. doi:10.1039/c5ra26502a.
  • Sabo-Attwood, T., J. M. Unrine, J. W. Stone, C. J. Murphy, S. Ghoshroy, D. Blom, P. M. Bertsch, and L. A. Newman. 2012. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–60. doi:10.3109/17435390.2011.579631.
  • Sau, T. K., A. S. Urban, S. K. Dondapati, M. Fedoruk, M. R. Horton, A. L. Rogach, F. D. Stefani, J. O. Rädler, and J. Feldmann. 2009. Controlling loading and optical properties of gold nanoparticles on liposome membranes. Colloid Surface. A. 342:92–96. doi:10.1016/j.colsurfa.2009.04.014.
  • Savithramma, N., S. Ankanna, and G. Bhumi. 2012. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano. Vision. 2:61–68.
  • Sene, C. F. B., M. C. McCann, R. H. Wilson, and R. Crinter. 1994. Fourier-transform Raman and Fourier-transform infrared spectroscopy: An investigation of five higher plant cell walls and their components. Plant Physiol. 106:1623–31. doi:10.1104/pp.106.4.1623.
  • Sharma, S., and K. N. Uttam. 2016. Investigation of the manganese stress on wheat plant by attenuated total reflectance Fourier transform infrared spectroscopy. Spectrosc. Lett. 49:520–28. doi:10.1080/00387010.2016.1212897.
  • Sharma, S., and K. N. Uttam. 2017a. Early diagnosis of mercury stress of wheat seedlings using attenuated total reflection Fourier transform infrared spectroscopy. Anal. Lett. doi:10.1080/00032719.2017.1383411.
  • Sharma, S., and K. N. Uttam. 2017b. Rapid analyses of stress of copper oxide nanoparticles on wheat plants at an early stage by laser induced fluorescence and attenuated total reflectance Fourier transform infrared spectroscopy. Vib. Spectrosc. 92:135–50. doi:10.1016/j.vibspec.2017.06.004.
  • Sliman, O., L. A. Bumm, R. Callaghan, C. G. Blatchford, and M. Kerker. 1983. Surface-enhanced Raman scattering by citrate on colloidal silver. J. Phys. Chem. 87:1014–23. doi:10.1021/j100229a020.
  • Szymanska-Chargot, M., and A. Zdunek. 2013. Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys. 8:29–42. doi:10.1007/s11483-012-9279-7.
  • Tan, X. M., and B. Fugetsu. 2007. Multi-walled carbon nanotubes interact with cultured rice cells: Evidence of a self-defense response. J. Biomed. Nanotechnol. 3:285–88. doi:10.1166/jbn.2007.035.
  • Tayeb, A. H., H. Sadeghifar, M. A. Hubbe, and O. J. Rojas. 2017. Lipoxygenase-mediated peroxidation of model plant extractives. Ind. Crop. Prod. 104:253–62. doi:10.1016/j.indcrop.2017.04.041.
  • Todica, M., N. Cloica, L. E. Olar, I. Papuc, C. Cota, E. Marin, D. Manea, and E. M. Nagy. 2016. Preliminary XRD and IR investigation of some starch based biodegradable systems. Rom. Biotech. Lett. 21:11825–31.
  • Turker, K. S., O. Mutlu, I. Celikyurt, F. Akar, and G. Ulak. 2016. Tianeptine, olanzapine and fluoxetine show similar restoring effects on stress induced molecular changes in mice brain: An FT-IR study. Spectrochim. Acta A. 161:178–85. doi:10.1016/j.saa.2016.02.038.
  • Turker, S., M. Dogan, and F. Severcan. 2007. The characterization and differentiation of higher plants by Fourier transform infrared spectroscopy. Appl. Spectrosc. 61:300–308. doi:10.1366/000370207780220903.
  • Turkevich, J., P. C. Stevenson, and J. Hillier. 1951. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11:55–75. doi:10.1039/DF9511100055.
  • Via, B. K., C. Zhou, G. Acquah, W. Jiang, and L. Eckhardt. 2014. Near infrared spectroscopy calibration for wood chemistry: Which chemometric technique is best for prediction and interpretation? Sensors 14:13532–47. doi:10.3390/s140813532.
  • Vinopal, S., T. Ruml, and P. Kotrba. 2007. Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int. Biodeterior. Biodegr. 60:96–102. doi:10.1016/j.ibiod.2006.12.007.
  • Wang, Q., L. Lu, X. Wu, Y. Li, and J. Lin 2003. Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiol. 23:345–51. doi:10.1093/treephys/23.5.345.
  • Wilson, R. H., A. C. Smith, M. K. Kova, P. K. Saunders, N. Wellner, and K. W. Waldron. 2000. The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy. Plant Physiol. 124:397–405. doi:10.1104/pp.124.1.397.
  • Xu, F., J. Yu, T. Tesso, F. Dowell, and D. Wang. 2013. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy 104:801–809. doi:10.1002/chin.201418298.
  • Yan, H., X. Song, K. Tian, Y. Chen, Y. Xiong, and S. Min. 2018. Quantitative determination of additive Chlorantranilip role in Abamectin preparation: Investigation of bootstrapping soft shrinkage approach by mid-infrared spectroscopy. Spectrochim. Acta A 191:296–302. doi:10.1016/j.saa.2017.08.067.
  • Yang, F., C. Liu, F. Gao, M. Su, X. Wu, L. Zheng, F. Hong, and P. Yang. 2007. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res. 119:77–88. doi:10.1007/s12011-007-0046-4.
  • Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu, and P. Yang. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 110:179–90.
  • Yang, J., and H. E. Yen. 2002. Early salt stress effects on the changes in chemical composition in leaves of ice plant and arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiol. 130:1032–42.
  • Yu, P. 2006. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions. Spectroscopy 20:229–51. doi:10.1155/2006/263634.
  • Zhou, G., G. Taylor, and A. Polle. 2011. FTIR-ATR-based prediction and modelling of lignin and energy contents reveals independent intra-specific variation of these traits in bioenergy poplars. Plant Methods. 7:9. doi:10.1186/1746-4811-7-9.
  • Zuverza-Mena, N., R. Armendariz, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2016. Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value. Front. Plant Sci. 7:90. doi:10.3389/fpls.2016.00090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.