196
Views
0
CrossRef citations to date
0
Altmetric
Plasma Spectroscopy

Size Dependent Dissolution of Silver Nanoparticles in Human Monocytic/Macrophage-Like U937 Cells and Speciation by Single Particle-Inductively Coupled Plasma-Mass Spectrometry (SP-ICP-MS)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2912-2927 | Received 13 Mar 2022, Accepted 12 May 2022, Published online: 25 May 2022

References

  • Abad-Alvaro, I., E. Pena-Vazquez, E. Bolea, P. Bermejo-Barrera, J. R. Castillo, and F. Laborda. 2016. Evaluation of number concentration quantification by single-particle inductively coupled plasma mass spectrometry: Microsecond vs. Millisecond dwell times. Analytical and Bioanalytical Chemistry 408 (19):5089–97. doi:10.1007/s00216-016-9515-y.
  • Akbaba, T. N., N. Ertas, and O. Alp. 2022. Characterization of the silver species released from clothing by single particle-inductively coupled plasma-mass spectrometry using a microsecond dwell time. Analytical Letters 55 (4):580–95. doi:10.1080/00032719.2021.1950166.
  • Bolea, E., M. S. Jimenez, J. Perez-Arantegui, J. C. Vidal, M. Bakir, K. Ben-Jeddou, A. C. Gimenez-Ingalaturre, D. Ojeda, C. Trujillo, and F. Laborda. 2021. Analytical applications of single particle inductively coupled plasma mass spectrometry: A comprehensive and critical review. Analytical Methods : advancing Methods and Applications 13 (25):2742–95. doi:10.1039/d1ay00761k.
  • Burns, K. E., R. F. Uhrig, M. E. Jewett, M. F. Bourbon, and K. A. Krupa. 2021. Characterizing the role of biologically relevant fluid dynamics on silver nanoparticle dependent oxidative stress in adherent and suspension in vitro models. Antioxidants 10 (6):832. doi:10.3390/antiox10060832.
  • Cuello-Nunez, S., I. Abad-Alvaro, D. Bartczak, M. E. D. Busto, D. A. Ramsay, F. Pellegrino, and H. Goenaga-Infante. 2020. The accurate determination of number concentration of inorganic nanoparticles using SPICP-MS with the dynamic mass flow approach. Journal of Analytical Atomic Spectrometry 35 (9):1832–9. doi:10.1039/C9JA00415G.
  • Dong, L. J., X. X. Zhou, L. G. Hu, Y. G. Yin, and J. F. Liu. 2018. Simultaneous size characterization and mass quantification of the in vivo core-biocorona structure and dissolved species of silver nanoparticles. Journal of Environmental Sciences (China) 63:227–35. doi:10.1016/j.jes.2017.10.010.
  • Echegoyen, Y., and C. Nerin. 2013. Nanoparticle release from nano-silver antimicrobial food containers. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 62:16–22. doi:10.1016/j.fct.2013.08.014.
  • Gliga, A. R., S. Skoglund, I. O. Wallinder, B. Fadeel, and H. L. Karlsson. 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release. Particle and Fibre Toxicology 11:11.
  • Guo, X. Q., Y. Li, J. Yan, T. Ingle, M. Y. Jones, N. Mei, M. D. Boudreau, C. K. Cunningham, M. Abbas, A. M. Paredes, et al. 2016. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays. Nanotoxicology 10 (9):1373–84. doi:10.1080/17435390.2016.1214764.
  • He, X. L., H. T. Zhang, H. L. Shi, W. Y. Liu, and E. Sahle-Demessie. 2020. Fates of Au, Ag, ZnO, and CeO2 nanoparticles in simulated gastric fluid studied using single-particle-inductively coupled plasma-mass spectrometry. Journal of the American Society for Mass Spectrometry 31 (10):2180–90. doi:10.1021/jasms.0c00278.
  • Hondow, N., J. Harrington, R. Brydson, S. H. Doak, N. Singh, B. Manshian, and A. Brown. 2011. STEM mode in the SEM: A practical tool for nanotoxicology. Nanotoxicology 5 (2):215–27. doi:10.3109/17435390.2010.535622.
  • Hsiao, I. L., F. S. Bierkandt, P. Reichardt, A. Luch, Y. J. Huang, N. Jakubowski, J. Tentschert, and A. Haase. 2016. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: Comparison of different ICP-MS techniques. Journal of Nanobiotechnology 14 (1):50. doi:10.1186/s12951-016-0203-z.
  • Hsiao, I. L., Y. K. Hsieh, C. F. Wang, I. C. Chen, and Y. J. Huang. 2015. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environmental Science & Technology 49 (6):3813–21. doi:10.1021/es504705p.
  • Jiang, X., T. Miclăuş, L. Wang, R. Foldbjerg, D. S. Sutherland, H. Autrup, C. Chen, and C. Beer. 2015. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: Implication for cytotoxicity. Nanotoxicology 9 (2):181–9. doi:10.3109/17435390.2014.907457.
  • Jimenez, M. S., M. Bakir, D. Isabal, M. T. Gomez, J. Perez-Arantegui, J. R. Castillo, and F. Laborda. 2021. Evaluation of hydrodynamic chromatography coupled to inductively coupled plasma mass spectrometry for speciation of dissolved and nanoparticulate gold and silver. Analytical and Bioanalytical Chemistry 413 (6):1689–99. doi:10.1007/s00216-020-03132-3.
  • Johnston, H. J., G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone. 2010. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxicology 40 (4):328–46. doi:10.3109/10408440903453074.
  • Kim, S., and D. Y. Ryu. 2013. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. Journal of Applied Toxicology : JAT 33 (2):78–89. doi:10.1002/jat.2792.
  • Laborda, F., E. Bolea, and J. Jimenez-Lamana. 2014. Single particle inductively coupled plasma mass spectrometry: A powerful tool for nanoanalysis. Analytical Chemistry 86 (5):2270–8. doi:10.1021/ac402980q.
  • Laborda, F., A. C. Gimenez-Ingalaturre, E. Bolea, and J. R. Castillo. 2020. About detectability and limits of detection in single particle inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy 169:105883. doi:10.1016/j.sab.2020.105883.
  • Laborda, F., J. Jimenez-Lamana, E. Bolea, and J. R. Castillo. 2011. Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 26 (7):1362–71. doi:10.1039/c0ja00098a.
  • Laborda, F., J. Jimenez-Lamana, E. Bolea, and J. R. Castillo. 2013. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. Journal of Analytical Atomic Spectrometry 28 (8):1220–32. doi:10.1039/c3ja50100k.
  • Li, Y., T. Qin, T. Ingle, J. Yan, W. He, J. J. Yin, and T. Chen. 2017. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology 91 (1):509–19. doi:10.1007/s00204-016-1730-y.
  • Liu, W., Y. A. Wu, C. Wang, H. C. Li, T. Wang, C. Y. Liao, L. Cui, Q. F. Zhou, B. Yan, and G. B. Jiang. 2010. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology 4 (3):319–30. doi:10.3109/17435390.2010.483745.
  • Li, Y. L., and W. X. Wang. 2021. Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. Chemosphere 281:130762.
  • Loula, M., A. Kaňa, R. Koplík, J. Hanuš, M. Vosmanská, and O. Mestek. 2019. Analysis of silver nanoparticles using single-particle inductively coupled plasma-mass spectrometry (ICP-MS): Parameters affecting the quality of results. Analytical Letters 52 (2):288–307. doi:10.1080/00032719.2018.1459657.
  • Malysheva, A., A. Ivask, C. L. Doolette, N. H. Voelcker, and E. Lombi. 2021. Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nature Nanotechnology 16 (8):926–32. doi:10.1038/s41565-021-00914-3.
  • Milic, M., G. Leitinger, I. Pavicic, M. Z. Avdicevic, S. Dobrovic, W. Goessler, and I. V. Vrcek. 2015. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. Journal of Applied Toxicology : JAT 35 (6):581–92. doi:10.1002/jat.3081.
  • Mitrano, D. M., E. Rimmele, A. Wichser, R. Erni, M. Height, and B. Nowack. 2014. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. Acs Nano.8 (7):7208–19. doi:10.1021/nn502228w.
  • Montano, M. D., H. R. Badiei, S. Bazargan, and J. F. Ranville. 2014. Improvements in the detection and characterization of engineered nanoparticles using SPICP-MS with microsecond dwell times. Environmental Science-Nano 1 (4):338–46. doi:10.1039/C4EN00058G.
  • Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival - application to proliferation and cyto-toxicity assays. Journal of Immunological Methods 65 (1-2):55–63. doi:10.1016/0022-1759(83)90303-4.
  • Mozhayeva, D., and C. Engelhard. 2019. A quantitative nanoparticle extraction method for microsecond time resolved single-particle ICP-MS data in the presence of a high background. Journal of Analytical Atomic Spectrometry 34 (8):1571–80. doi:10.1039/C9JA00042A.
  • Olesik, J. W., and P. J. Gray. 2012. Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: Determination of the number of particles and the analyte mass in each particle. Journal of Analytical Atomic Spectrometry 27 (7):1143–55. doi:10.1039/c2ja30073g.
  • Pace, H. E., N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins, and J. F. Ranville. 2011. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Analytical Chemistry 83 (24):9361–9. doi:10.1021/ac201952t.
  • Park, E. J., J. Yi, Y. Kim, K. Choi, and K. Park. 2010. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro : An International Journal Published in Association with BIBRA 24 (3):872–8. doi:10.1016/j.tiv.2009.12.001.
  • Reidy, B., A. Haase, A. Luch, K. A. Dawson, and I. Lynch. 2013. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials (Basel, Switzerland) 6 (6):2295–350. doi:10.3390/ma6062295.
  • Schwertfeger, D. M., J. R. Velicogna, A. H. Jesmer, S. Saatcioglu, H. Mcshane, R. P. Scroggins, and J. I. Princz. 2017. Extracting metallic nanoparticles from soils for quantitative analysis: Method development using engineered silver nanoparticles and SP-ICP-MS. Analytical Chemistry 89 (4):2505–13. doi:10.1021/acs.analchem.6b04668.
  • Shah, M., D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. J. Poinern. 2015. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel, Switzerland) 8 (11):7278–308. doi:10.3390/ma8115377.
  • Tao, H., K. Nagano, I. Tasaki, T. Q. Zhang, T. Ishizaka, J. Q. Gao, K. Harada, K. Hirata, H. Tsujino, K. Higashisaka, et al. 2020. Development and evaluation of a system for the semi-quantitative determination of the physical properties of skin after exposure to silver nanoparticles. Nanoscale Research Letters 15 (1):187. doi:10.1186/s11671-020-03421-x.
  • Vance, M. E., T. Kuiken, E. P. Vejerano, S. P. Mcginnis, M. F. Hochella, D. Rejeski, and M. S. Hull. 2015. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology 6:1769–80. doi:10.3762/bjnano.6.181.
  • Veronesi, G., A. Deniaud, T. Gallon, P. H. Jouneau, J. Villanova, P. Delangle, M. Carriere, I. Kieffer, P. Charbonnier, E. Mintz, et al. 2016. Visualization, quantification and coordination of Ag+ ions released from silver nanoparticles in hepatocytes. Nanoscale 8 (38):17012–21. doi:10.1039/c6nr04381j.
  • Wang, X., H. Y. Yang, K. J. Li, Y. Xiang, Y. Sha, M. Zhang, X. Yuan, and K. Huang. 2020. Recent developments of the speciation analysis methods for silver nanoparticles and silver ions based on atomic spectrometry. Applied Spectroscopy Reviews 55 (6):509–24. doi:10.1080/05704928.2019.1684303.
  • Witzler, M., F. Kullmer, and K. Gunther. 2018. Validating a single-particle ICP-MS method to measure nanoparticles in human whole blood for nanotoxicology. Analytical Letters 51 (4):587–99. doi:10.1080/00032719.2017.1327538.
  • Wu, M. Y., H. B. Guo, L. Liu, Y. Liu, and L. M. Xie. 2019. Size-dependent cellular uptake and localization profiles of silver nanoparticles. International Journal of Nanomedicine 14:4247–59. doi:10.2147/IJN.S201107.
  • Yang, Y., L. Luo, H. P. Li, Q. Wang, Z. G. Yang, Z. P. Qu, and R. Ding. 2018. Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS. Talanta 182:156–63. doi:10.1016/j.talanta.2018.01.077.
  • You, F., W. Q. Tang, and L. Y. L. Yung. 2018. Real-time monitoring of the Trojan-horse effect of silver nanoparticles by using a genetically encoded fluorescent cell sensor. Nanoscale 10 (16):7726–35. doi:10.1039/c7nr05975b.
  • Yu, S. J., J. B. Chao, J. Sun, Y. G. Yin, J. F. Liu, and G. B. Jiang. 2013. Quantification of the uptake of silver nanoparticles and ions to HepG2 cells. Environmental Science & Technology 47 (7):3268–74. doi:10.1021/es304346p.
  • Yu, S.-J., Y.-J. Lai, L.-J. Dong, and J.-F. Liu. 2019. Intracellular dissolution of silver nanoparticles: Evidence from double stable isotope tracing. Environmental Science & Technology 53 (17):10218–26. doi:10.1021/acs.est.9b03251.
  • Zhang, W., Y. Yao, N. Sullivan, and Y. S. Chen. 2011. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environmental Science & Technology 45 (10):4422–8. doi:10.1021/es104205a.
  • Zook, J. M., S. E. Long, D. Cleveland, C. L. A. Geronimo, and R. I. Maccuspie. 2011. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Analytical and Bioanalytical Chemistry 401 (6):1993–2002. doi:10.1007/s00216-011-5266-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.