146
Views
2
CrossRef citations to date
0
Altmetric
Environmental Analysis

Determination of Trace Elements in Mushrooms by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS): Characterization of the Health Risk

ORCID Icon, , , & ORCID Icon
Pages 2201-2214 | Received 28 Oct 2022, Accepted 14 Dec 2022, Published online: 28 Dec 2022

Reference

  • Adamiec, E., and E. Jarosz-Krzemińska. 2019. Human health risk assessment associated with contaminants in the finest fraction of sidewalk dust collected in proximity to trafficked roads. Scientific Reports 9 (1):16364. doi:10.1038/s41598-019-52815-0.
  • Andrade, V., M. L. Mateus, M. C. Batoréu, M. Aschner, and A. P. Santos. 2013. Urinary delta-ALA: A potential biomarker of exposure and neurotoxic effect in rats co-treated with a mixture of lead, arsenic and manganese. NeuroToxicology 38:33–41. doi:10.1016/j.neuro.2013.06.003.
  • Árvay, J., J. Tomáš, M. Hauptvogl, M. Kopernická, A. Kováčik, D. Bajčan, and P. Massányi. 2014. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 49 (11):815–27. doi:10.1080/03601234.2014.938550.
  • Árvay, J., J. Tomáš, M. Hauptvogl, P. Massányi, ľ. Harangozo, T. Tóth, R. Stanovič, Š. Bryndzová, and M. Bumbalová. 2015. Human exposure to heavy metals and possible public health risks via consumption of wild edible mushrooms from Slovak Paradise National Park, Slovakia. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 50 (11):833–43. doi:10.1080/03601234.2015.1058107.
  • Bedwal, R. S., N. Nair, M. P. Sharma, and R. S. Mathur. 1993. Selenium-its biological perspectives. Medical Hypotheses 41 (2):150–9. doi:10.1016/0306-9877(93)90062-U.
  • Busuioc, G., C. C. Elekes, C. Stihi, S. Iordache, and S. C. Ciulei. 2011. The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environmental Science and Pollution Research International 18 (6):890–6. doi:10.1007/s11356-011-0446-z.
  • Campos, J. A., and N. A. Tejera. 2011. Bioconcentration factors and trace elements bioaccumulation in Sporocarps of fungi collected from quartzite acidic soils. Biological Trace Element Research 143 (1):540–54. doi:10.1007/s12011-010-8853-4.
  • Chungu, D., A. Mwanza, P. Ng’andwe, B. C. Chungu, and K. Maseka. 2019. Variation of heavy metal contamination between mushroom species in the Copperbelt province, Zambia: Are the people at risk? Journal of the Science of Food and Agriculture 99 (7):3410–6. doi:10.1002/jsfa.9558.
  • De Romaña, D. L., M. Olivares, R. Uauy, and M. Araya. 2011. Risks and benefits of copper in light of new insights of copper homeostasis. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS) 25 (1):3–13. doi:10.1016/j.jtemb.2010.11.004.
  • Drewnowska, M., G. Jarzyńska, A. K. Kojta, and J. Falandysz. 2012. Mercury in European Blusher, Amanita rubescens, mushroom and soil bioconcentration potential and intake assessment. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 47 (5):466–74. doi:10.1080/03601234.2012.663609.
  • EC 432/2012. European Commission Regulation – establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0432&from = EN
  • EC 1881/2006. European Commission Regulation – setting maximum levels for certain contaminants in foodstuffs. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN
  • Fu, Z., G. Liu, and L. Wang. 2020. Assessment of potential human health risk of trace element in wild edible mushroom species collected from Yunnan Province, China. Environmental Science and Pollution Research International 27 (23):29218–27. doi:10.1007/s11356-020-09242-w.
  • Giannaccini, G., L. Betti, L. Palego, G. Mascia, L. Schmid, M. Lanza, A. Mela, L. Fabbrini, L. Biondi, and A. Lucacchini. 2012. The trace elements content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environmental Monitoring and Assessment 184 (12):7579–95. doi:10.1007/s10661-012-2520-5.
  • Igbiri, S., N. A. Udowelle, O. C. Ekhator, R. N. Asomugha, Z. N. Igweze, and O. E. Orisakwe. 2018. Edible mushrooms from Niger Delta, Nigeria with heavy metal levels of public health concern: A human health risk assessment. Recent Patents on Food, Nutrition & Agriculture 9 (1):31–41. doi:10.2174/2212798409666171129173802.
  • Järup, L. 2003. Hazards of heavy metal contamination. British Medical Bulletin 68 (1):167–82. doi:10.1093/bmb/ldg032.
  • Jarzyńska, G., M. Gucia, A. K. Kojta, K. Rezulak, and J. Falandysz. 2011. Profile of trace elements in Parasol Mushroom (Macrolepiota procera) from Tucholskie Forest. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 46 (8):741–51. doi:10.1080/03601234.2011.603986.
  • Joint FAO/WHO Expert Committee on Food Additives. 2009. WHO Technical Report Series No. 952. 2009 (vol. 47, pp. 465–7). Geneva: World Health Organization. https://apps.who.int/iris/handle/10665/44062.
  • Joint FAO/WHO Expert Committee on Food Additives. 2000. Fifty-ninth meeting. https://www.fao.org/3/at894e/at894e.pdf
  • Kalač, P., and L. Svoboda. 2000. A review of trace element concentrations in edible mushrooms. Food Chemistry 69 (3):273–81. doi:10.1016/S0308-8146(99)00264-2.
  • Kalač, P. 2019. Mineral composition and radioactivity of edible mushrooms (1st ed.). New York, United States: Academic Press.
  • Kala, P., J. Burda, and I. Stakova. 1991. Concentration of lead, cadmium, mercury and cooper in mushrooms in the vicinity of lead smelter. The Science of the Total Environment 105:109–19. doi:10.1016/0048-9697(91)90333-A.
  • Karami, H., N. Shariatifar, S. Nazmara, M. Moazzen, B. Mahmoodi, and A. M. Khaneghah. 2021. The concentration and probabilistic health risk of Potentially Toxic Elements (PTEs) in edible mushrooms (Wild and Cultivated) samples collected from different cities of Iran. Biological Trace Element Research 199 (1):389–400. doi:10.1007/s12011-020-02130-x.
  • Keen, C. L., J. L. Ensunsa, B. Lönnerdal, and S. Zidenberg-Cherr. 2013. Manganese. In Encyclopedia of Human Nutrition, eds. B. Caballero, L. Allen, and A. Prentice (148–54). New York, United States: Academic Press.
  • Kojta, A. K., M. Gucia, G. Jarzynska, M. Lewandowska, A. Zakrzewska, J. Falandysz, and D. Zhang. 2011. Phosphorus and certain metals in Parasol Mushrooms (Macrolepiota procera) and soils from the Augustowska Forest and Ełk region in north-eastern Poland. Fresenius Environmental Bulletin 20 (11A):3044–52.
  • Liang, Y., X. Yi, Z. Dang, Q. Wang, H. Luo, and J. Tang. 2017. Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. International Journal of Environmental Research and Public Health 14 (12):1557. doi:10.3390/ijerph14121557.
  • Nnorom, I. C., S. O. Eze, and P. O. Ukaogo. 2020. Mineral contents of three wild-grown edible mushrooms collected from forests of south eastern Nigeria: An evaluation of bioaccumulation potentials and dietary intake risks. Scientific African 8: E163. doi:10.1016/j.sciaf.2019.e00163.
  • Nowakowski, P., R. Markiewicz-Żukowska, J. Soroczyńska, A. Puścion-Jakubik, K. Mielcarek, M. H. Borawska, and K. Socha. 2021. Evaluation of toxic element content and health risk assessment of edible wild mushrooms. Journal of Food Composition and Analysis 96:103698. doi:10.1016/j.jfca.2020.103698.
  • Nygård, T., E. Steinnes, and O. Røyset. 2012. Distribution of 32 elements in organic surface soils: Contributions from atmospheric transport of pollutants and natural sources. Water, Air, & Soil Pollution 223 (2):699–713. doi:10.1007/s11270-011-0895-5.
  • Nwokeke, U. G., and C. E. Enyoh. 2021. Contamination and dietary intake risks assessment of heavy metals in some species of wild edible mushrooms grown in Southern Nigeria. World News of Natural Sciences 39:1–10.
  • Orywal, K., K. Socha, P. Nowakowski, W. Zoń, P. Kaczyński, B. Mroczko, B. Łozowicka, and M. Perkowski. 2021. Health risk assessment of exposure to toxic elements resulting from consumption of dried wild-grown mushrooms available for sale. PloS One 16 (6):e0252834. doi:10.1371/journal.pone.0252834.
  • Paustenbach, D. J., B. E. Tvermoes, K. M. Unice, B. L. Finley, and B. D. Kerger. 2013. A review of the health hazards posed by cobalt. Critical Reviews in Toxicology 43 (4):316–62. doi:10.3109/10408444.2013.779633.
  • Plum, L. M., L. Rink, and H. Haase. 2010. The essential toxin: Impact of zinc on human health. International Journal of Environmental Research and Public Health 7 (4):1342–65. doi:10.3390/ijerph7041342.
  • Rudawska, M., and T. Leski. 2005. Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris, L.) stands in Poland. The Science of the Total Environment 339 (1-3):103–15. doi:10.1016/j.scitotenv.2004.08.002.
  • Schlecht, M. T., and I. Säumel. 2015. Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany. Environmental Pollution (Barking, Essex: 1987) 204:298–305. doi:10.1016/j.envpol.2015.05.018.
  • Severoglu, Z., S. Sumer, B. Yalcin, Z. Leblebici, and A. Aksoy. 2013. Trace metal levels in edible wild fungi. International Journal of Environmental Science and Technology 10 (2):295–304. doi:10.1007/s13762-012-0139-2.
  • Shekhawat, K., S. Chatterjee, and B. Joshi. 2015. Chromium toxicity and its health hazards. International Journal of Advanced Research 3 (7):167–72.
  • Širić, I., M. Humar, A. Kasap, I. Kos, B. Mioč, and F. Pohleven. 2016. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms. Environmental Science and Pollution Research International 23 (18):18239–52. doi:10.1007/s11356-016-7027-0.
  • Sirić, I., A. Kasap, D. Bedeković, and J. Falandysz. 2017. Lead, cadmium and mercury contents and bioaccumulation potential of wild edible saprophytic and ectomycorrhizal mushrooms, Croatia. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 52 (3):156–65. doi:10.1080/03601234.2017.1261538.
  • Stefanovic, V., J. Trifkovic, S. Djurdjic, V. Vukojevic, Z. Tesic, and J. Mutic. 2016. Study of silver, selenium and arsenic concentration in wild edible mushroom Macrolepiota procera, health benefit and risk. Environmental Science and Pollution Research 23:22084–98. doi:10.1007/s11356-016-7450-2.
  • Tarnacka, B., A. Jopowicz, and M. Maślińska. 2021. Copper, iron, and manganese toxicity in neuropsychiatric conditions. International Journal of Molecular Sciences 22 (15):7820. doi:10.3390/ijms22157820.
  • Tüzen, M., M. Özdemir, and A. Demirbaş. 1998. Study of heavy metals in some cultivated uncultivated mushrooms of Turkish origin. Food Chemistry 63 (2):247–51. doi:10.1016/S0308-8146(97)00225-2.
  • U.S. EPA. 2005. Supplemental guidance for assessing susceptibility from early-life exposure to carcinogens. https://www.epa.gov/sites/default/files/2013-09/documents/childrens_supplement_final.pdf
  • WHO. 2006. Principles for evaluating health risks in children associated with exposure to chemicals. Environmental Health Criteria 237. http://apps.who.int/iris/bitstream/handle/10665/43604/924157237X_eng.pdf?sequence=1
  • Yang, H., Z. Li, L. Lu, J. Long, and Y. Liang. 2013. Cross-species extrapolation of prediction models for cadmium transfer from soil to corn grain. PloS One 8 (12):e80855. doi:10.1371/journal.pone.0080855.
  • Yin, J., L. Wang, Y. Chen, D. Zhang, A. M. Hegazy, and X. Zhang. 2019. A comparison of accumulation and depuration effect of dissolved hexavalent chromium (Cr 6+) in head and muscle of bighead carp (Aristichthys nobilis) and assessment of the potential health risk for consumers. Food Chemistry 286:388–94. doi:10.1016/j.foodchem.2019.01.186.
  • Zhu, F., L. Qu, W. Fan, M. Qiao, H. Hao, and X. Wang. 2011. Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environmental Monitoring and Assessment 179 (1–4):191–9. doi:10.1007/s10661-010-1728-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.