41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Global structure of competing model with flocculation in a reaction–diffusion chemostat

&
Received 22 Aug 2023, Accepted 02 Apr 2024, Published online: 27 Apr 2024

References

  • Haegeman B, Lobry C, Harmand J. Modeling bacteria flocculation as density–dependent growth. AIChE J. 2007;53(2):535–539. doi: 10.1002/aic.11077
  • Haegeman B, Rapaport A. How flocculation can explain coexistence in the chemostat. J Biol Dyn. 2008;2(1):1–13. doi: 10.1080/17513750801942537
  • Hutchinson GE. The paradox of the plankton. Am Nat. 1961;95(882):137–145. doi: 10.1086/282171
  • Hsu SB, Hubbell SP, Waltman P. A mathematical model for single nutrient competition in continuous cultures of micro-organisms. SIAM J Appl Math. 1977;32(2):366–382. doi: 10.1137/0132030
  • Armstorng RA, McGehee R. Competition exclusion. Am Nat. 1980;115(2):151–170. doi: 10.1086/283553
  • Smith HL, Waltman P. The theory of the chemostat, dynamics of microbial competition. Cambridge: Cambridge University Press; 1995.
  • Fekih-Salem R, Harmand J, Lobry C, et al. Extensions of the chemostat model with flocculation. J Math Anal Appl. 2013;397(1):292–306. doi: 10.1016/j.jmaa.2012.07.055
  • Fekih-Salem R, Rapaport A, Sari T. Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses. Appl Math Model. 2016;40(17–18):7656–7677. doi: 10.1016/j.apm.2016.03.028
  • Wu JH, Wolkowicz GSK. A system of resource-based growth with two resources in the unstirred chemostat. J Differ Equ. 2001;172(2):300–332. doi: 10.1006/jdeq.2000.3870
  • Wu JH, Nie H, Wolkowicz GSK. A mathematical model of competition for two essential resources in the unstirred chemostat. SIAM J Appl Math. 2004;65(1):209–229. doi: 10.1137/S0036139903423285
  • Shi Y, Bao XX. Coexistence of competing species with flocculation in an unstirred chemostat. Appl Math Lett. 2023;137:108507. doi: 10.1016/j.aml.2022.108507
  • Wu JH. Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Anal. 2000;39(7):817–835. doi: 10.1016/S0362-546X(98)00250-8
  • Wu JH, Nie H, Wolkowicz GSK. The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat. SIAM J Math Anal. 2007;38(6):1860–1885. doi: 10.1137/050627514
  • Jiang DH, Nie H, Wu JH. Crowding effects on coexistence solutions in the unstirred chemostat. Appl Anal. 2017;96(6):1016–1046. doi: 10.1080/00036811.2016.1171319
  • Hsu SB, Hubbell S, Waltman P. A mathematical theory for single-nutrient competition in continuous cultures of microorganisms. SIAM J Appl Math. 1977;32(2):366–383. doi: 10.1137/0132030
  • Butler GJ, Hsu SB, Waltman P. Coexistence of competing predators in a chemostat. J Math Biol. 1983;17(2):133–151. doi: 10.1007/BF00305755
  • Hsu SB, Waltman P. On a system of reaction–diffusion equations arising from competition in an unstirred chemostat. SIAM J Appl Math. 1993;53(4):1026–1044. doi: 10.1137/0153051
  • Hsu SB, Smith HL, Waltman P. Dynamics of competition in the unstirred chemostat. Can Appl Math Q. 1994;2:461–483.
  • Shi JP, Wu YX, Zou XF. Coexistence of competing species for intermediate dispersal rates in a reaction-diffusion chemostat model. J Dyn Differ Equ. 2020;32(2):1085–1112. doi: 10.1007/s10884-019-09763-0
  • Nie H, Shi Y, Wu JH. The effect of diffusion on the dynamics of a predator-prey chemostat model. SIAM J Appl Math. 2022;82(3):821–848. doi: 10.1137/21M1432090
  • Nie H, Hsu SB, Wu JH. A competition model with dynamically allocated toxin production in the unstirred chemostat. Commun Pure Appl Anal. 2017;16(4):1373–1404. doi: 10.3934/cpaa.2017066
  • Belgacem F. Elliptic boundary value problems with indefinite weights: variational formulations of the principal eigenvalue and applications. Harlow: Addison–Wesley Longman; 1997.
  • Shi JP, Wang XF. On global bifurcation for quasilinear elliptic systems on bounded domains. J Differ Equ. 2009;246(7):2788–2812. doi: 10.1016/j.jde.2008.09.009
  • Hansen SR, Hubbell SP. Single–nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes. Science. 1980;207(4438):1491–1493. doi: 10.1126/science.6767274

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.