153
Views
3
CrossRef citations to date
0
Altmetric
Review articles

Cannabis, cannabinoids and schizophrenia: integration of the evidence

, &
Pages 357-368 | Received 02 Nov 2007, Published online: 06 Jul 2009

References

  • Hall W, Solowij N. Adverse effects of cannabis. Lancet 1998; 352: 1611–1616
  • Perkonigg A, Lieb R, Hofler M, Schuster P, Sonntag H, Wittchen H-U. Patterns of cannabis use abuse and dependence over time: incidence progression and stability in a sample of 1228 adolescents. Addiction 1999; 94: 1663–1678
  • Degenhardt L, Hall W. The relationship between tobacco use, substance-use disorders and mental health: results from the National Survey of Mental Health and Well-being. Nicotine Tob Res 2001; 3: 225–34
  • Solowij N. Cannabis and cognitive functioning. Cambridge University Press, Cambridge 1998
  • Hall W, Degenhardt L. Cannabis use and psychosis: a review of clinical and epidemiological evidence. Aust N Z J Psychiatry 2000; 34: 26–34
  • Linszen DH, Dingemans PM, Lenior ME. Cannabis abuse and the course of recent onset schizophrenic disorders. Arch Gen Psychiatry 1994; 51: 273–279
  • D'Souza DC, Abi-Saab WM, Madonick S, et al. Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition psychosis and addiction. Biol Psychiatry 2005; 57: 594–608
  • O'Leary DS, Block RI, Koeppel JA, et al. Effects of smoking marijuana on brain perfusion and cognition. Neuropsychopharmacology 2002; 26: 802–816
  • Pope HG, Gruber AJ, Yurgelun-Todd D. The residual neuropsychological effects of cannabis: the current status of research. Drug Alcohol Depend 1995; 38: 25–34
  • Solowij N, Michie PT, Fox AM. Differential impairments of selective attention due to frequency and duration of cannabis use. Biol Psychiatry 1995; 37: 731–739
  • Pope HG, Yurgelun-Todd D. The residual cognitive effects of heavy marijuana use in college students. JAMA 1996; 21: 521–527
  • Bolla KI, Brown K, Eldreth D, Tate K, Cadet JL. Dose-related neurocognitive effects of marijuana use. Neurology 2002; 59: 1337–1343
  • Eldreth DA, Matochik JA, Cadet JL, Bolla KI. Abnormal brain activity in prefrontal brain regions in abstinent marijuana users. Neuroimage 2004; 239: 14–20
  • Pope HG, Gruber AJ, Hudson JI, Huestis MA, Yurgelun-Todd D. Neuropsychological performance in long-term cannabis users. Arch Gen Psychiatry 2001; 58: 909–915
  • Grant I, Gonzalez R, Carey CL, Natarajan L, Wolfson T. Non-acute (residual) neurocognitive effects of cannabis use: a meta-analytic study. J Int Neuropsychol Soc 2003; 9: 679–689
  • Mathew RJ, Wilson WH, Tant SR. Acute changes in cerebral blood flow association with marijuana smoking. Acta Psychiatr Scand 1989; 79: 118–128
  • Volkow ND, Gillespie H, Mullani N, et al. Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication. Psychiatry Res 1996; 67: 29–38
  • Mathew RJ, Wilson WH, Coleman RE, Turkington TG, DeGrado TR. Marijuana intoxication and brain activation in marijuana smokers. Life Sci 1997; 60: 2075–2089
  • Mathew RJ, Wilson WH, Turkington TG, Coleman RE. Cerebellar activity and disturbed time sense after THC. Brain Res 1999; 797: 183–189
  • Mathew RJ, Wilson WH, Chiu NY, Turkington TG, Coleman RE. Regional cerebral blood flow and depersonalization after tetrahydrocannabinol administration. Acta Psychiatr Scand 1999; 100: 67–75
  • Kanayama G, Rogowska J, Pope HG, Gruber SA, Yurgelun-Todd DA. Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study. Psychopharmacology (Berl) 2004; 176: 239–247
  • Bolla KI, Eldreth D, Matochik J, Cadet JL. Neural substrates of faulty decision-making in abstinent marijuana users. NeuroImage 2005; 26: 480–492
  • O'Leary DS, Block RI, Flaum M, et al. Acute marijuana effects on rCBF and cognition: a PET study. Neuroreport 2000; 11: 3835–3841
  • Chang L, Yakupov R, Cloak C, Ernst T. Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain 2006; 129: 1096–1112
  • Quickfall J, Crockford D. Brain neuroimaging in cannabis use: a review. J Neuropsychiatry Clin Neurosci 2006; 18: 318–332
  • Wilson WH, Mathew RJ, Turkington T, Hawk TC, Coleman RE, Provenzale J. Brain morphological changes and early marijuana use: a magnetic resonance and positron emission tomography study. J Addict Dis 2000; 19: 1–22
  • Aasly J, Storsaeter O, Nilsen G, Smevik O, Rinck P. Minor structural brain changes in young drug abusers: a magnetic resonance study. Acta Neurol Scand 1993; 87: 210–214
  • Matochik J, Eldreth D, Cadet J, Bolla K. Altered brain tissue composition in heavy marijuana users. Drug Alcohol Depend 2005; 77: 23–30
  • Yücel M, Solowij N, Respondek C et al. Regional brain abnormalities associated with heavy long-term cannabis use. Arch Gen Psychiatry in press.
  • Toga AW, Thompson PM. New approaches in brain morphometry. Am J Geriatr Psychiatry 2002; 10: 13–23
  • Hambrecht M, Hafner H. Cannabis vulnerability and the onset of schizophrenia: an epidemiologic perspective. Aust N Z J Psychiatry 2000; 34: 468–475
  • Andreasson S, Allebeck P, Engstrom A, Rydberg U. Cannabis and schizophrenia: a longitudinal study of Swedish conscripts. Lancet 1987; 2: 1483–1486
  • Zammit S, Allebeck P, Andreasson S, Lundberg I, Lewis G. Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: historical cohort study. BMJ 2002; 325: 1199–1023
  • van Os J, Bak M, Hassen M, Bilj RV, de Graaf R, Verdoux H. Cannabis use and psychosis: a longitudinal population based study. Am J Epidemiol 2002; 156: 319–327
  • Arsenault L, Cannon M, Poulton R, Murray R, Caspi A, Moffitt TE. Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ 2002; 325: 1212–1213
  • Spear LP. The adolescent brain and age-related behavioural manifestations. Neurosci Biobehav Rev 2000; 24: 417–463
  • Ehrenreich H, Rinn T, Kunert HJ, et al. Specific attentional dysfunction in adults following early start of cannabis use. Psychopharmacology 1999; 142: 295–301
  • Pistis M, Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL. Adolescent exposure to cannabinoids induces long-lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons. Biol Psychiatry 2004; 56: 86–94
  • McGuire P, Jones R, Harvey I, Williams M, McGuffin P, Murray R. Morbid risk of schizophrenia for relatives of patients with cannabis associated psychosis. Schizophr Res 1995; 15: 277–281
  • van Os J, Marcelis M. The ecogenetics of schizophrenia: a review. Schizophr Res 1998; 32: 127–35
  • Caspi A, Moffitt TE, Cannon M, et al. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry 2005; 15: 1117–1127
  • Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Rev. Neurosci 2006; 7: 818–827
  • French ED, Dillon K, Wu X. Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport 1997; 8: 649–652
  • Henquet C, Krabbendam L, Spauwen J, et al. Prospective cohort study of cannabis use predisposition for psychosis and psychotic symptoms in young people. BMJ 2005; 330: 11–14
  • Fergusson DM, Horwood LJ, Ridder EM. Tests of causal linkages between cannabis use and psychotic symptoms. Addiction 2005; 100: 354–366
  • Boydell J, van Os J, Lambri M, et al. Incidence of schizophrenia in southeast London between 1965 and 1997. Br J Psychiatry 2003; 182: 45–49
  • Boydell J, Van Os J, Caspi A, et al. Trends in cannabis use prior to first presentation with schizophrenia, in South-East London between 1965 and 1999. Psychol Med 2006; 36: 1441–1446
  • Hickman M, Vickerman P, Macleod J, Kirkbride J, Jones PB. Cannabis and schizophrenia: model projections of the impact of the rise in cannabis use on historical and future trends in schizophrenia in England and Wales. Addiction 2007; 102: 597–606
  • Murray RM, Morrison PD, Henquet C, Di Forti MD. Cannabis, the mind and society: the hash realities. Nat Rev Neurosci 2007; 8: 885–895
  • Jablensky A, McGrath J, Herrman H, et al. Psychotic disorders in urban areas: an overview of the study on low prevalence disorders. Aust N Z J Psychiatry 2000; 34: 221–236
  • Weil A. Adverse reactions to marihuana. N Engl J Med 1970; 282: 997–1000
  • Bowers MB, Mazure CM, Nelson JC, Jatlow PI. Psychotogenic drug use and neuroleptic response. Schizophr Bull 1990; 16: 81–85
  • Jablensky A, Sartorius N, Ernberg G. Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization ten-country study. Psychol Med Monogr Suppl 1992; 20:1–97. [Erratum in Psychol Med Monogr Suppl 1992; 22:following 1092.]
  • Carlsson A. The dopamine theory revisited. Schizophrenia, SR Hirsch, DR Weinberger. Blackwell, Cambridge, MA 1995; 379–400
  • Pistis M, Porcu G, Melis M, Diana M, Gessa GL. Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur J Neurosci 2001; 14: 96–102
  • Warner R, Taylor D, Wright J, et al. Substance use amongst the mentally ill: prevalence reasons for use and effects on illness. Am J Orthopsychiatry 1994; 64: 30–39
  • Addington J, Duchak V. Reasons for substance use in schizophrenia. Acta Psychiatr Scand 1997; 96: 329–333
  • Fowler IL, Carr VJ, Carter NT, Lewin TJ. Patterns of current and lifetime substance use in schizophrenia. Schizophr Bull 1998; 24: 443–455
  • Peralta V, Cuesta MJ. Influence of cannabis abuse on schizophrenic psychopathology. Acta Psychiatr Scand 1992; 85: 127–130
  • van der Stelt M, Veldhuis WB, Bar PR, Veldink GA, Vliegenthart JF, Nicolay K. Neuroprotection by 9-tetrahydrocannabinol the main active compound in marijuana against ouabain-induced in vivo excitotoxicity. J Neurosci 2001; 21: 6475–6479
  • van der Stelt M, Di Marzo V. Anandamide as an intracellular messenger regulating ion channel activity. Prostaglandins Other Lipid Mediat 2005; 77: 111–122
  • Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003; 4: 873–884
  • Di Marzo V, Melck D, Bisogno T, De Petrocellis L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 1998; 21: 521–528
  • Egertova M, Giang DK, Cravatt BF, Elphick MR. A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc R Soc Lond B Biol Sci 1998; 7: 2081–2085
  • Alger BE, Pitler TA. Retrograde signaling at GABAA-receptor synapses in the mammalian. CNS Trends Neurosci 1995; 18: 333–340
  • Wilson RI, Nicoll RA. Endocannabinoid signalling in the brain. Science 2002; 296: 678–682
  • Auclair N, Otani S, Soubrie P, Crepel F. Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J Neurophysiol 2000; 83: 3287–3293
  • Diana MA, Levenes C, Mackie K, Marty A. Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids. J Neurosci 2002; 22: 200–208
  • Katona I, Sperlagh B, Sik A, et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 1999; 19: 4544–4558
  • Tsou K, Mackie K, Sanudo-Pena MC, Walker JM. Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing gabaergic interneurons in rat hippocampal formation. Neuroscience 1999; 93: 969–975
  • Gerdeman GL, Partridge J, Lupica CR, et al. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci 2003; 26: 184–192
  • Hoehe MR, Caenazzo L, Martinez MM, et al. Genetic and physical mapping of the human cannabinoid receptor gene to chromosome 6q 14–q15. New Biol 1991; 3: 880–885
  • Cao Q, Martinez M, Zhang JA, et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 1997; 43: 1–8
  • Ujike H, Takaki M, Nakata K, et al. CNR1 central cannabinoid receptor gene associated with susceptibility to hebephrenic schizophrenia. Mol Psychiatry 2002; 7: 515–518
  • Dean B, Sundram S, Bradbury R, Scarr E, Copolov D. Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience 2001; 103: 9–15
  • Dean B, Bradbury R, Copolov DL. Cannabis-sensitive dopaminergic markers in postmortem central nervous system: changes in schizophrenia. Biol Psychiatry 2003; 53: 585–592
  • Zavitsanou K, Garrick T, Huang XF. Selective antagonist [3H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 355–360
  • Zavitsanou K, Katsifis A, Yu Y, Huang XF. 3H]AF-DX 384 binding in the anterior cingulate cortex in schizophrenia and mood disorders. Brain Res Bull 2005; 65: 397–403
  • Leweke FM, Giuffrida A, Wurster U, Emrich HM, Piomelli D. Elevated endogenous cannabinoids in schizophrenia. NeuroReport 1999; 10: 1665–1669
  • Leweke FM, Giuffrida A, Faulhaber J., et al. Endogenous cannabinoids in acute schizophrenia and other psychiatric conditions. Schizophr Res 2002; 53: 226
  • Giuffrida A, Leweke FM, Gerth CW, et al. Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 2004; 29: 2108–2114
  • Mackay AVP, Iversen LL, Rossor M, et al. Increased dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry 1982; 39: 991–997
  • Okubo Y, Suhara T, Suzuki K, et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997; 385: 634–636
  • Kapur S. Psychosis as a state of aberrant salience: a framework linking biology phenomenology and pharmacology in schizophrenia. Am J Psychiatry 2003; 160: 13–23
  • Schultz W. Getting formal with dopamine and reward. Neuron 2002; 36: 241–263
  • Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 2004; 7: 53–62
  • Marinelli S, Mercuri NB. Cannabinoid and vanilloid receptors are activated by N-arachidonyl-dopamine in rat midbrain dopaminergic neurons. In: Symposium on the cannabinoids. Burlington, Vermont: International Cannabinoid Research Society, 2004:140.
  • Melis M, Pillollam G, Bisognom T, et al. Protective activation of the endocannabinoid system during ischemia in dopamine neurons. Neurobiol Dis 2006; 24: 15–27
  • Banerjee SP, Snyder SH, Mechoulam R. Cannabinoids: influence on neurotransmitter uptake in rat brain synaptosomes. J Pharmacol Exp Ther 1975; 194: 74–81
  • Chen J, Paredes W, Lowinson JH, Gardner EI. D9-Tetrahydrocannabinol enhances presynaptic dopamine efflux in media prefrontal cortex. Eur J Pharmacol 1990; 190: 259–262
  • Manzoni OJ, Bockaert J. Cannabinoids inhibit GABAergic synaptic transmission in the mouse nucleus accumbens. Eur J Pharmacol 2001; 412: R3–R5
  • Szabo B, Siemes S, Wallmichrath I. Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur J Neurosci 2002; 15: 2057–2061
  • Tzschentke TM. Pharmacology and behavioural pharmacology of the mesocortical dopamine system. Prog Neurobiol 2001; 63: 241–320
  • Verrico CD, Jentsch JD, Roth RH. Persistent and anatomically selective reduction in prefrontal cortical dopamine metabolism after repeated intermittent cannabinoid administration to rats. Synapse 2003; 49: 61–66
  • Herkenham M, Lynn AB, Ross-Johnson M, Melvin LS, de Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991; 11: 563–583
  • Puumala T, Sirvio J. Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience 1998; 83: 489–499
  • Puumala T, Ruotsalainen S, Jakala P, Koivisto E, Riekkinen P, Jr, Sirivo J. Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol Learn Mem 1996; 66: 189–211
  • Jentsch JD, Andrusiak EA, Bowers MB, Roth RH. Delta-9-tertahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in rats: blockade of the dopaminergic effects by HA966. Neuropsychopharmacology 1997; 16: 426–432
  • Knable MB, Weinberger DR. Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 1997; 11: 123–131
  • Abi-Dargham A, Mawlawi O, Lombardo I, et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 2002; 22: 3708–3719
  • Lewis DA, Pierri JN, Volk DW, Melchitzky DS, Woo TU. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 1999; 46: 616–626
  • Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW. Abnormal neural synchrony in schizophrenia. J Neurosci 2003; 137: 407–411
  • Benes FM, McSparren J, Bird ED, San Giovanni JP, Vincent SL. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 1991; 48: 996–1001
  • Akbarian S, Kim JJ, Potkin SG, et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons of prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–266
  • Irving AJ, Coutts AA, Harvey J, et al. Functional expression of cell surface cannabinoid CB(1) receptors on presynaptic inhibitory terminals in cultured rat hippocampal neurons. Neuroscience 2000; 98: 253–262
  • Hajos N, Katona I, Naiem SS, et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci 2000; 12: 3239–3249
  • Kim D, Thayer SA. Cannabinoids inhibit the formation of new synapses between hippocampal neurons in culture. J Neurosci 2001; 21: RC146
  • Traub RD, Whittington MA, Stanford IM, Jefferys JG. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 1996; 17: 621–624
  • Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic transmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 1997; 17: 2921–2927
  • Tsai G, Passani LA, Slusher BS, et al. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 1995; 528: 29–36
  • Akbarian S, Bunney WE, Potkin SG, et al. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 1993; 50: 227–230
  • Tamminga CA. Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 1998; 12: 21–36
  • Krystal JH, Anand A, Moghaddam B. Effects of NMDA receptor antagonists: implications for the pathophysiology of schizophrenia. Arch Gen Psychiatry 2002; 59: 663–634
  • Sanudo-Pena MC, Walker JM. Role of the subthalamic nucleus in cannabinoid actions in the substantia nigra of the rat. J Neurophysiol 1997; 77: 1635–1638
  • Takahashi KA, Linden DJ. Cannabinoid receptor modulation of synapses received by cerebellar Purkinje cells. J Neurophysiol 2000; 83: 1167–1180
  • Scarr E, Dean B. A proposed pathological model in the hippocampus of subjects with schizophrenia. Clin Exp Pharmacol Physiol 2001; 28: 70–73
  • Weinberger DR. Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 1999; 45: 395–402
  • Kraepelin E. Dementia praecox and paraphrenia. Livingstone, Edinburgh 1919
  • Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669
  • Murray RM, O'Callaghan E, Castle DJ, Lewis SW. A neurodevelopmental approach to the classification of schizophrenia. Schizophr Bull 1992; 18: 319–332
  • Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 2000; 12: 501–527
  • Fried PA, Watkinson B, Gray R. Differential effects on cognitive functioning in 13- to 16-year-olds prenatally exposed to cigarettes and marihuana. Neurotoxicol Teratol 2003; 25: 427–436
  • Huizink AC, Mulder EJ. Maternal smoking drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neurosci Biobehav Rev 2006; 30: 24–41
  • Fried PA, Watkinson B, Gray R. Differential effects on cognitive functioning in 9- to 12- year olds prenatally exposed to cigarettes and marihuana. Neurotoxicol Teratol 1998; 20: 293–306
  • Fried PA, Watkinson B. Differential effects on facets of attention in adolescents prenatally exposed to cigarettes and marihuana. Neurotoxicol Teratol 2001; 23: 421–430
  • Smith AM, Fried PA, Hoganc MJ, Cameron I. Effects of prenatal marijuana on response inhibition: an fMRI study of young adults. Neurotoxicol Teratol 2004; 26: 533–542
  • Wang X, Dow-Edwards D, Keller E, Hurd YL. Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain. Neuroscience 2003; 118: 681–694
  • Wang X, Dow-Edwards D, Anderson V, Minkoff H, Hurd YL. In utero marijuana exposure associated with abnormal amygdala dopamine D2 gene expression in the human fetus. Biol Psychiatry 2004; 15: 909–915
  • Panikashvili D, Simeonidou C, Ben-Shabat S, et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 2001; 413: 527–531
  • Berghuis P, Dobszay MB, Wang X, et al. Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proc Natl Acad Sci USA 2005; 102: 19115–19120
  • Galve-Roperh I, Aguado T, Rueda D, Velasco G, Guzmán M. Endocannabinoids: a new family of lipid mediators involved in the regulation of neural cell development. Curr Pharm Des 2006; 12: 2319–2325
  • Rueda D, Navarro B, Martinez-Serrano A, Guzman M, Galve- Roperh I. The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J Biol Chem 2002; 277: 46645–46650
  • Derkinderen P, Toutant M, Burgaya F, et al. Regulation of a neuronal form of focal adhesion kinase by anandamide. Science 1996; 273: 1719–1722
  • Fride E, Mechoulam R. Ontogenetic development of the response to anandamide and delta-9-tetrahydricannabinol in mice. Brain Res Dev Brain Res 1996; 96: 131–134
  • Murphy LL, Steger RW, Bartke A. Psychoactive and non-psychoactive cannabinoids and their effects on reproductive neuroendocrine parameters. Biochemistry and physiology of substance abuse, RR Watson. CRC Press, Boca Raton, FL 1990; 2: 73–94
  • Vela G, Fuentes JA, Bonnin A, Fernandez-Ruiz JJ, Ruiz-Gayo M. Perinatal exposure to D9-tetrahydrocannabinol (D9-THC) leads to changes in opioid-related behavioral patterns in rats. Brain Res 1995; 680: 142–147
  • Fride E, Weinstock M. Prenantal stress increases anxiety related behaviour and alters cerebral lateralization of dopamine activity. Life Sci 1988; 42: 1059–1065
  • Bonnin A, de Miguel R, Castro JG, Ramos JA, Fernandez-Ruiz JJ. Effects of perinatal exposure to delta 9-tetrahydrocannabinol on the fetal and early postnatal development of tyrosine hydroxylase-containing neurons in rat brain. J Mol Neurosci 1996; 7: 291–308
  • Navarro M, Rodriguez de Fonseca F, Hernandez ML, Ramos JA, Fernandez-Ruiz JJ. Motor behavior and nigrostriatal dopaminergic activity in adult rats perinatally exposed to cannabinoids. Pharmacol Biochem Behav 1994; 47: 47–58
  • Navarro M, de Miguel R, Rodrıguez de Fonseca, Ramos FJA, Fernandez-Ruiz JJ Perinatal cannabinoid exposure modifies the sociosexual approach behavior and the mesolimbic dopaminergic activity of adult male rats. Behav Brain Res 1996; 75:91–98.
  • Mokler DA, Robinson SE, Johnson JH, Hong JS, Rosecrans JA. Neonatal administration of D9-tetrahydrocannabinol alters the neurochemical response to stress in the adult Fischer-344 rat. Neurotoxicol Teratol 1987; 9: 321–326
  • Vela G, Martin S, Garcia-Gil L, et al. Maternal exposure to D9-tetrahydrocannabinol facilitates morphine self-administration and changes A opioid receptor binding in brain regions related to drug reinforcement in adult offspring female rats. Brain Res 1998; 807: 101–109
  • Navarro M, Rubio P, Rodriguez de Fonseca F. Behavioral consequences of maternal exposure to natural cannabinoids in rats. Psychopharmacology 1995; 122: 1–14
  • Schneider M, Koch M. Chronic pubertal but not adult chronic cannabinoid treatment impairs sensorimotor gating recognition memory and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 2003; 28: 1760–1769
  • Moore THM, Zammit S, Lingford-Hughes A, et al. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet 2007; 370: 319–328

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.