233
Views
5
CrossRef citations to date
0
Altmetric
Nutrition & Metabolism

An evaluation of in vitro intestinal absorption of iron, calcium and potassium in chickens receiving gold nanoparticles

, &
Pages 559-565 | Accepted 09 Feb 2016, Published online: 02 Aug 2016

REFERENCES

  • Artym, J. (2008) The role of lactoferrin in the iron metabolism. Part I. Effect of lactofferin on intake, transport and iron storage. Postepy Higieny Medycyny Doświadczalnej, 62: 599–612. (in Polish).
  • Buzea, C., Pacheco, I., Blandino, I. & Robbie, K. (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 4: 17–172.
  • Chur, C. (2014) Gold nanoparticle-spermidine complex blocks the inward rectifier potassium channel. American Journal of Cardiovascular Disease, 2: 34–46.
  • De Jong, W.H., Hagens, W.I., Krystek, P., Burger, M.C., Sips, A.J.A.M. & Geertsma, R.E. (2008) Particle size dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 29: 1912–1919. doi:10.1016/j.biomaterials.2007.12.037
  • Des Rieux, A., Ragnarsson, E.G., Gullberg, E., Preat, V., Schneider, Y.J. & Artursson, P. (2005) Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. European Journal of Pharmaceutical Sciences, 25: 455–465. doi:10.1016/j.ejps.2005.04.015
  • Dolińska, B., Łopata, K. & Ryszka, F. (2012) Prolactin and other regulators of calcium absorption. Annales Academiae Medicae Stetinensis, 66: 52–56. (in Polish).
  • Gawlik, A. & Krasnowska, M. (2001) The role of ionic channels of the T cell in cellular signalling. Alergia Astma Immunologia, 6: 17–23. (in Polish).
  • Glahn, R.P., Rassier, M., Goldman, M.I., Lee, O.A. & Cha, J. (2000) A comparison of iron availability from commercial iron preparations using an in vitro digestion/Caco-2 cell culture model. The Journal of Nutritional Biochemistry, 11: 62–68. doi:10.1016/S0955-2863(99)00078-9
  • Halliwell, B. (2009) The wanderings of a free radical. Free Radical Biology & Medicine, 46: 531–545. doi:10.1016/j.freeradbiomed.2008.11.008
  • Hillyer, J. & Albrecht, R. (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. Journal of Pharmaceutical Sciences, 90: 1927–1936. doi:10.1002/jps.1143
  • Hinkley, G.K., Carpinone, P., Munson, J.W., Powers, K. & Roberts, M. (2015) Oral absorption of PEG-coated versus uncoated gold nanospheres: does agglomeration matter? Particle and Fibre Toxicology, 12: 1–12. doi:10.1186/s12989-015-0085-5
  • Hoet, P.H.M., Brüske-Hohlfeld, I. & Salata, O.V. (2004) Nanoparticles – known and unknown health risks. Journal of Nanobiotechnology, 2: 12. (published online). doi:10.1186/1477-3155-2-12
  • Hu, M., Chen, J., Li, Z., Au, L., Hartland, G.V., Li, X., Marquez, M. & Xia, Y. (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chemical Society Reviews, 35: 1084–1094. doi:10.1039/b517615h
  • Jo, M.-R., Bae, S.-H., Go, M.-R., Kim, H.-J., Hwang, Y.-G. & Choi, S.-J. (2015) Toxicity and biokinetics of colloidal gold nanoparticles. Nanomaterials, 5: 835–850. doi:10.3390/nano5020835
  • Kalgaonkar, S. & Lonnerdal, B. (2009) Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells. Journal of Nutritional Biochemistry, 20: 304–311. doi:10.1016/j.jnutbio.2008.04.003
  • Kodiha, M., Hutter, E., Boridy, S., Juhas, M., Maysinger, D. & Stochaj, U. (2014) Gold nanoparticles induce nuclear damage in breast cancer cells, which is further amplified by hyperthermia. Cellular and Molecular Life Sciences, 71: 4259–4273. doi:10.1007/s00018-014-1622-3
  • Kohlmeier, M. (2015) Minerals and trace elements, in: Nutrient Metabolism, Second Ed., Chapter 11, pp. 673–807 (San Diego, USA, Academic Press Inc.).
  • Kulbacka, J., Saczko, J. & Chwiałkowska, A. (2009) Stres oksydacyjny w procesach uszkodzenia komórek. Polski Merkuriusz Lekarski, 157: 44–47. (in Polish).
  • Leifert, A., Pan, Y., Kinkeldey, A., Chiefer, F., Setzler, J., Achlee, O., Lichtenbeld, H., Schmid, G., Wenzel, W., Jahnen-Dechent, W. & Simon, U. (2013) Differential hERG ion channel activity of ultrasmall gold nanoparticles. Pnas, 110: 8004–8009. doi:10.1073/pnas.1220143110
  • Lushchak, V.I. (2007) Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Moscow), 72: 809–882. doi:10.1134/S0006297907080020
  • Maccormack, T.J., Clark, R.J., Dang, M.K.M., Guibin, M., Kelly, J.A., Veinot, J.G.C. & Goss, G.G. (2012) Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing. Nanotoxicology, 5: 514–525. doi:10.3109/17435390.2011.587904
  • Mahler, G.J., Esch, M.B., Tako, E., Southard, T.L., Archer, S.D., Glahn, R.P. & Shuler, M.L. (2012) Oral exposure to polystyrene nanoparticles affects iron absorption. Nature Nanotechnology, 7: 264–271. doi:10.1038/nnano.2012.3
  • Martirosyan, A., Polet, M., Bazes, A., Sergent, T. & Schneider, Y.J. (2012) Food nanoparticles and intestinal inflammation: a real risk?, in: Szabo, I. (Eds) Inflammatory Bowel Disease, chapter 8 (Rijeka, Croatia, InTech).
  • McLean, E., Goddard, J.S., Claereboudt, M.R.G., Al Oufi, H., Mevel, J.Y. & Teṧkeredẑ, Z. (2001) The teleost gut persorbs microparticulates. Ribarstvo, 59: 47–56.
  • Moghimi, S.M., Hunter, A.C. & Murray, J.C. (2001) Long circulating and target specific nanoparticles: theory and practice. Pharmacological Reviews, 53: 283–318.
  • Mosser, D.M. & Edwards, J.P. (2008) Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 8: 958–869. doi:10.1038/nri2448
  • Nieśpielak, P., Paździor-Czapula, K., Czerski, A. & Otrocka-Domagała, I. (2014) A typical case of treatment-resistant inflammatory bowel disease in cat. Życie Weteterynaryjne, 6: 512–515. (in Polish).
  • Oberdörster, G., Oberdorster, E. & Oberdorster, J. (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113: 823–839. doi:10.1289/ehp.7339
  • Ojo, A.A. & Wood, C.M. (2007) In vitro analysis of the bioavailability of six metals via the gastrointestinal tract of the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 83: 10–23. doi:10.1016/j.aquatox.2007.03.006
  • Powell, J.J., Faria, N., Thomas-Mckay, E. & Pele, L.C. (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. Journal of Autoimmunity, 34: 226–233. doi:10.1016/j.jaut.2009.11.006
  • Pulit, J., Banach, M. & Kowalski, Z. (2011) Właściwości nanocząsteczek miedzi, platyny, srebra, złota i palladu. Chemia. Czasopismo Techniczne, 10: 197–208.
  • Ruenraroengsak, P., Cook, J.M. & Florence, A.T. (2010) Nanosystem drug targeting: facing up to complex realities. Journal of Control Release, 141: 265–276. doi:10.1016/j.jconrel.2009.10.032
  • Sadauskas, E., Wallin, H., Stoltenberg, M., Vogel, U., Doering, P., Larsen, A. & Danscher, G. (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Particle and Fibre Toxicology, 4: 10. doi:10.1186/1743-8977-4-10
  • Saptarshi,, S.R., Duschl, A. & Lopata, A.L. (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticles. Journal of Nanobiotechnology, 11:26. (published online).
  • Schleh, C., Semmler-Behnke, M., Lipka, J., Wenk, A., Hirn, S., Schäffler, M., Schmid, G., Simon, U. & Kreyling, W.G. (2012) Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology, 6: 36–46. doi:10.3109/17435390.2011.552811
  • Shahare, B. & Yashpal, M. (2013) Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicology Mechanisms and Methods, 3: 161–167. doi:10.3109/15376516.2013.764950
  • Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R.R. & Sastry, M. (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 21: 10644–10654. doi:10.1021/la0513712
  • Singh, N., Manshian, B., Jenkins, G.J.S., Griffiths, S.M., Williams, P.M., Maffeis, T.G.G., Wright, C.J. & Doak, S.H. (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30: 3891–3914. doi:10.1016/j.biomaterials.2009.04.009
  • Smulikowska, S. & Rutkowski, A. (2005) Nutrient Requirements of Poultry. 4th rev. ed. (Jablonna, The Kielanowski Institue of Animal Physiology and Nutrition PAS). (in Polish).
  • Sonavane, G., Tomoda, K. & Makino, K. (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids and Surfaces B. Biointerfaces, 66: 274–280. doi:10.1016/j.colsurfb.2008.07.004
  • Sung, J.H., Ji, J.H., Park, J.D., Song, M.Y., Song, K.S., Ryu, H.R., Yoon, J.U., Jeon, K.S., Jeong, J., Han, B.S., Chung, Y.H., Chang, H.K., Lee, J.H., Kim, D.W., Kelman, B.J. & Yu, I.J. (2011) Subchronic inhalation toxicity of gold nanoparticles. Particle and Fibre Toxicology, 8: 16. doi:10.1186/1743-8977-8-16
  • Tedesco, S., Doyle, H., Blasco, J., Redmond, G. & Sheehan, D. (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic Toxicology, 100: 178–186. doi:10.1016/j.aquatox.2010.03.001
  • Tsai, C.Y., Shiau, A.L., Chen, S.Y., Chen, Y.H., Cheng, P.C., Chang, M.Y., Chen, D.H., Chou, C.H., Wang, C.R. & Wu, C.L. (2007) Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis and Rheumatology, 56: 544–554. doi:10.1002/art.22401
  • Wilczewska, A.Z., Niemirowicz, K., Markiewicz, K.H. & Car, H. (2012) Nanoparticles as drug delivery systems. Pharmacological Reports, 64: 1020–1037. doi:10.1016/S1734-1140(12)70901-5
  • Wojnicki, M., Luty-Błocho, M., Bednarski, M., Dudek, M., Knutelska, J., Sapa, J., Zygmunt, M., Nowak, G. & Fitzner, K. (2013) Tissue distribution of gold nanoparticles after single intravenous administration in mice. Pharmacological Reports, 65: 1033–1038. doi:10.1016/S1734-1140(13)71086-7
  • Yao, M., He, L., McClements, D.J. & Hang, X. (2015) Uptake of gold nanoparticles by intestinal epithelial cells: impact of particle size on their absorption, accumulation and toxicity. Journal of Agricultural and Food Chemistry, 63: 8044–8049. doi:10.1021/acs.jafc.5b03242
  • Zhang, X., Wu, Y., Wu, D., Wang, Y., Chang, J., Zhai, Z., Meng, A., Liu, P.X., Zhang, L.A. & Fan, F.Y. (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. International Journal of Nanomedicine, 5: 771–781.
  • Zhang, X.D., Wu, D., Shen, X., Liu, P.X., Yang, N., Zhao, B., Zhang, H., Sun, Y.M., Zhang, L.A. & Fan, F.Y. (2011) Size-dependent in vivo toxicity of PEGcoated gold nanoparticles. International Journal of Nanomedicine, 6: 2071–2081.
  • Zigmond, E. & Jung, S. (2013) Intestinal macrophages: well educated exceptions from the rule. Immunology, 4: 162–164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.