298
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Development and Performance Study of a New Physicochemical Composite Inhibitor for Coal Spontaneous Combustion Control

, , , ORCID Icon, , , & show all
Pages 2480-2503 | Received 27 Oct 2020, Accepted 07 Jan 2021, Published online: 17 Jan 2021

References

  • Adewunmi, A. A., S. Ismail, and A. S. Sultan. 2018. Crosslinked polyacrylamide composite hydrogels impregnated with fly ash: Synthesis, characterization and their application as fractures sealant for high water producing zones in oil and gas wells. J. Polym. Environ. 26:3294–306.
  • Cavallaro, G., A. Gianguzza, G. Lazzara, S. Milioto, and D. Piazzese. 2013. Alginate gel beads filled with halloysite nanotubes. Appl. Clay Sci. 72:132–37.
  • Chen, P., F. J. Huang, and Y. Fu. 2016. Performance of water-based foams affected by chemical inhibitors to retard spontaneous combustion of coal. Int. J. Min. Sci. Techno. 26:443–48.
  • Cheng, W. M., X. M. Hu, J. Xie, and Y. Y. Zhao. 2017. An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties. Fuel 210:826–35.
  • Chiew, C. S. C., H. K. Yeoh, P. Pasbakhsh, K. Krishnaiah, P. E. Poh, B. T. Tey, and E. S. Chan. 2016. Halloysite/alginate nanocomposite beads: Kinetics, equilibrium and mechanism for lead adsorption. Appl. Clay Sci. 119:301–10.
  • Colon, M., and C. Nerín. 2016. Synergistic, antagonistic and additive interactions of green tea polyphenols. Eur. Food Res. Technol. 242:1–10.
  • Cui, F. S., L. W. Bin, C. M. Shu, and J. C. Jiang. 2018. Inhibiting effect of imidazolium-based ionic liquids on the spontaneous combustion characteristics of lignite. Fuel 217:508–14.
  • Deng, J., Z. J. Bai, Y. Xiao, and C. M. Shu. 2018. Effects on the activities of coal microstructure and oxidation treated by imidazolium-based ionic liquids. J. Therm. Anal. Calorim. 133:453–63.
  • Deng, J., J. Y. Zhao, A. C. Huang, Y. N. Zhang, C. P. Wang, and C. M. Shu. 2017. Thermal behavior and microcharacterization analysis of second-oxidized coal. J. Therm. Anal. Calorim 127:439–48.
  • Dou, G. L. 2014. Study on the prevention of coal spontaneous combustion chemical inhibitors. Xuzhou: China University of Mining and Technology.
  • Fan, L. D., B. B. Zhang, C. F. He, X. X. Cao, and G. Qin. 2016. Research progress on structural properties, surface modification and application of halloysite nanotubes. Mater. Rev. 30:96–100.
  • Fang, S. L. 2012. Research status and development tendency of coal mine disaster prevention and control technology in China. Clean Coal Technol. 18 (1):90–94.
  • Finqueneisel, G., T. Zimny, A. Albiniak, T. Siemieniewska, D. Vogt, and J. V. Weber. 1998. Cheap adsorbent. Part 1: Active cokes from lignites and improvement of their adsorptive properties by mild oxidation. Fuel 78:549–56.
  • Frei, B., and J. V. Higdon. 2003. Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J. Nutr. 133:3275S–3284S.
  • Kong, B., Z. H. Li, Y. L. Yang, Z. Liu, and D. C. Yan. 2017. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environ. Sci. Pollut. R. 24:1–18.
  • Li, J. H., Z. H. Li, Y. L. Yang, B. Kong, and C. J. Wang. 2018. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion. Fuel Process. Technol 171:350–60.
  • Li, J. H., Z. H. Li, Y. L. Yang, and X. Y. Zhang. 2017. Inhibitive effects of antioxidants on coal spontaneous combustion. Energ. Fuel 31:14180–90.
  • Li, J. L., W. Lu, and J. Xu. 2012. Coal Spontaneous Combustion prevention and cure with chemical retarder as well as analysis on retarding mechanism. Coal Sci. Technol. 40:50–53.
  • Li, L. C., Z. Y. Zheng, Q. Y. Wang, L. Ji, and Y. F. Yue. 2014. Polyethylene as a novel low-temperature inhibitor for lignite coal. J. Therm. Anal. Calorim. 117:1321–25.
  • Li, X. W. 2011. Application research of Surper-obsorbent Montmorillonite/crylic Acid/Acryl Amide Foam on Preventing Coal Firing. Qingdao: Shandong University of Science and Technology.
  • Li, X. Z., Y. F. Li, X. X. Zhu, B. N. Li, and G. Liu. 2003. Study advances on polymeric hydrogels. J. Funct. Mater. 4:382–85.
  • Liu, M. X., Z. X. Jia, D. M. Jia, and C. R. Zhou. 2014b. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci. 39:1498–525.
  • Liu, W., Z. Xu, T. Yang, Y. Deng, B. Xu, S. Feng, and Y. Li. 2014a. The protective role of tea polyphenols against methylmercury-induced neurotoxic effects in rat cerebral cortex via inhibition of oxidative stress. Free Radical Res. 48:849–63.
  • Lu, Y. 2017. Laboratory Study on the Rising Temperature of Spontaneous Combustion in Coal Stockpiles and a Paste Foam Suppression Technique. Energ. Fuel 31:7290–98.
  • Lu, Y., S. L. Shi, H. Q. Wang, Z. J. Tian, Q. Ye, and H. Y. Niu. 2019. Thermal characteristics of cement microparticle-stabilized aqueous foam for sealing high-temperature mining fractures. Int. J. Heat Mass Tran. 131:594–603.
  • Luo, Z. M., J. L. Deng, H. Wen, F. M. Cheng, and Y. B. Yang. 2010. Experimental Study and Property Analysis of Seal-filling Hydrogel Material for Hermetic Wall in Coal Mine. J. Wuhan Univ. Technol. 25:152–55.
  • Ma, Z. H., J. Wang, X. Gao, and T. Ding. 2012. Application of Halloysite Nanotubes. Prog. Chem. 24:275–83.
  • Mao, X. B., C. S. Gu, D. W. Chen, B. Yu, and J. He. 2017. Oxidative stress-induced diseases and tea polyphenols. Oncotarget 8:81649–61.
  • Nimaje, D. S., and D. P. Tripathy. 2016. Characterization of some Indian coals to assess their liability to spontaneous combustion. Fuel 163:139–47.
  • Niu, H. Y., X. L. Deng, S. L. Li, K. X. Cai, H. Zhu, F. Li, and J. Deng. 2016. Experiment study of optimization on prediction index gases of coal spontaneous combustion. J. Cent. South Univ 23:2321–28.
  • Peng, B. X. 1980. Natural ignition retardant of coal and its mechanism. J. Coal 3:38–48.
  • Qin, B. T., G. L. Dou, Y. Wang, H. H. Xin, L. Y. Ma, and D. M. Wang. 2017. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation. Fuel 190:129–35.
  • Ren, X. F., X. M. Hu, D. Xue, Y. S. Li, Z. A. Shao, H. Dong, W. M. Cheng, Y. Y. Zhao, L. Xin, and W. Lu. 2019. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal. J. Hazard Mater. 371:643–54.
  • Slovak, V., and B. Taraba. 2012. Urea and CaCl2 as inhibitors of coal low-temperature oxidation. J. Therm. Anal. Calorim. 110:363–67.
  • Tang, Y. B. 2016. Inhibition of low-temperature oxidation of bituminous coal using a novel phase-transition aerosol. Energ. Fuel 30:9303–09.
  • Tang, Y. B., and S. Xue. 2015. Laboratory study on the spontaneous combustion propensity of lignite undergone heating treatment at low temperature in inert and low-oxygen environments. Energ. Fuel 29:4683–89.
  • Vega, M. F., A. M. Fernández, E. Díaz-Faes, M. D. Casal, and C. Barriocanal. 2017. The effect of bituminous additives on the carbonization of oxidized coals. Fuel Process. Technol. 156:19–26.
  • Wang, L. Y., Y. L. Xu, S. G. Jiang, M. G. Yu, T. X. Chu, W. Q. Zhang, Z. Y. Wu, and L. W. Kou. 2012. Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Safety Sci. 50:1528–34.
  • Watanabe, W. S., and D. K. Zhang. 2001. The effect of inherent and added inorganic matter on low-temperature oxidation reaction of coal. Fuel Process. Technol. 74:145–60.
  • Xi, Z. L., X. Y. Guo, and J. Y. R. Liew. 2018. Investigation of thermoplastic powder synergizing polymorphic foam to inhibit coal oxidation at low temperature. Fuel 226:490–97.
  • Xia, T. Q., F. B. Zhou, X. X. Wang, Y. F. Zhang, Y. M. Li, J. H. Kang, and J. S. Liu. 2016. Controlling factors of symbiotic disaster between coal gas and spontaneous combustion in longwall mining gobs. Fuel 182:886–96.
  • Yang, J., C. R. Han, J. F. Duan, M. G. Ma, X. M. Zhang, F. Xu, and R. C. Sun. 2013. Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels. Cellulose 20:227–37.
  • Yang, Y. L., Z. H. Li, Y. B. Tang, Z. Liu, and H. J. Ji. 2014. Fine coal covering for preventing spontaneous combustion of coal pile. Nat. Hazards 74:603–22.
  • Yang, Y. L., S. J. Yu, R. Y. Zhang, H. Yang, and X. L. Fan. 1999. Study on new stopping agent of preventing coal spontaneous combustion. J. China Coal Sco. 24:163–66.
  • Zhang, L., W. L. Liu, and D. P. Men. 2014. Preparation and coking properties of coal maceral concentrates. Int. J. Min. Sci. Techno. 24:93–98.
  • Zhang, Y. T., Y. Q. Li, Y. Huang, S. S. Li, and W. F. Wang. 2018a. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology. J. Therm. Anal. Calorim. 131:2963–74.
  • Zhang, Y. T., Y. R. Liu, X. Q. Shi, C. P. Yang, W. F. Wang, and Y. Q. Li. 2018b. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel 233:68–76.
  • Zhao, M., and P. Liu. 2008. Halloysite nanotubes/polystyrene (HNTs/PS) nanocomposites via in situ bulk polymerization. J. Therm. Anal. Calorim. 94:103–07.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.