262
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Reduced Kinetics Model for the Oxidation of Transcritical/Supercritical Gasoline Surrogate/Ethanol Mixtures Using Real Gas State Equations

ORCID Icon, ORCID Icon & ORCID Icon
Received 20 Feb 2024, Accepted 21 Apr 2024, Published online: 06 May 2024

References

  • Alviso, D., M. Weyl Costa, L. Backer, P. Pepiot, N. Darabiha, and R. Gonçalves dos Santos. 2020. Chemical kinetic mechanism for diesel/biodiesel/ethanol surrogates using n-decane/methyl-decanoate/ethanol blends. J. Braz. Soc. Mech. Sci. Eng. 42 (2):1–14. doi:10.1007/s40430-020-2186-9.
  • Andrae, J. C. 2008. Development of a detailed kinetic model for gasoline surrogate fuels. Fuel 87 (10–11):2013–22. doi:10.1016/j.fuel.2007.09.010.
  • Andrae, J., and T. Kovács. 2016. Evaluation of adding an olefin to mixtures of primary reference fuels and toluene to model the oxidation of a fully blended gasoline. Energy Fuels 30 (9):7721–30. doi:10.1021/acs.energyfuels.6b01193.
  • Binder, A., R. Ecker, A. Glaser, and K. Müller. 2015. Gasoline direct injection. In Gasoline Engine Management, ed. R. Konrad, 110–21. Wiesbaden: Springer Vieweg.
  • Boer, C., G. Bonar, S. Sasaki, and S. Shetty (2013). Application of supercritical gasoline injection to a direct injection spark ignition engine for particulate reduction. Technical report, SAE Technical Paper.
  • Boer, C., J. Chang, and S. Shetty (2010). Transonic combustion-a novel injection-ignition system for improved gasoline engine efficiency. Technical report, SAE Technical Paper.
  • Bokor, C., B. Rohani, C. Humphries, D. Morrey, and F. Bonatesta. 2021. Investigating the impact of gasoline composition on pn in gdi engines using an improved measurement method. Int. J. Engine Res. 22 (11):3391–406. doi:10.1177/1468087420970374.
  • Burke, S. M., W. Metcalfe, O. Herbinet, F. Battin-Leclerc, F. M. Haas, J. Santner, F. L. Dryer, and H. J. Curran. 2014. An experimental and modeling study of propene oxidation. part 1: Speciation measurements in jet-stirred and flow reactors. Combust. Flame 161 (11):2765–84. doi:10.1016/j.combustflame.2014.05.010.
  • Cancino, L., M. Fikri, A. Oliveira, and C. Schulz. 2009. Autoignition of gasoline surrogate mixtures at intermediate temperatures and high pressures: Experimental and numerical approaches. Proc. Combust. Inst. 32 (1):501–08. doi:10.1016/j.proci.2008.06.180.
  • Cancino, L., M. Fikri, A. Oliveira, and C. Schulz. 2010. Measurement and chemical kinetics modeling of shock-induced ignition of ethanol- air mixtures. Energy Fuels 24 (5):2830–40. doi:10.1021/ef100076w.
  • Cancino, L., M. Fikri, A. Oliveira, and C. Schulz. 2011. Ignition delay times of ethanol-containing multi-component gasoline surrogates: Shock-tube experiments and detailed modeling. Fuel 90 (3):1238–44. doi:10.1016/j.fuel.2010.11.003.
  • Chueh, P., and J. Prausnitz. 1967a. Vapor-liquid equilibria at high pressures: Calculation of critical temperatures, volumes, and pressures of nonpolar mixtures. AichE J. 13 (6):1107–13. doi:10.1002/aic.690130613.
  • Chueh, P., and J. Prausnitz. 1967b. Vapor-liquid equilibria at high pressures: Calculation of partial molar volumes in nonpolar liquid mixtures. AichE J. 13 (6):1099–107. doi:10.1002/aic.690130612.
  • Davidson, D., B. Gauthier, and R. Hanson. 2005. Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures. Proc. Combust. Inst. 30 (1):1175–82. doi:10.1016/j.proci.2004.08.004.
  • Elfasakhany, A. 2014. Experimental study on emissions and performance of an internal combustion engine fueled with gasoline and gasoline/n-butanol blends. Energy Convers. Manage. 88:277–83. doi:10.1016/j.enconman.2014.08.031.
  • Fikri, M., J. Herzler, R. Starke, C. Schulz, P. Roth, and G. Kalghatgi. 2008. Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures. Combust. Flame 152 (1–2):276–81. doi:10.1016/j.combustflame.2007.07.010.
  • Foster, J., and R. S. Miller. 2010. Fundamentals of high pressure combustion. In High Pressure Processes in Chemical Engineering, ed. M. Lackner, 53–72. ProcessEng Engineering GmbH.
  • Gauthier, B., D. F. Davidson, and R. K. Hanson. 2004. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures. Combust. Flame 139 (4):300–11. doi:10.1016/j.combustflame.2004.08.015.
  • Goodwin, D. G., R. L. Speth, H. K. Moffat, and B. W. Weber. 2021. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 3.0.0. doi:10.5281/zenodo.8137090.
  • Green, D. 2007. Perry’s chemical engineer’s handbook 8/e section 2 physical & chem data (pod). New York: McGraw-Hill Education.
  • Green, D. W., and M. Z. Southard. 2019. Perry’s chemical engineers’ handbook. New York: McGraw-Hill Education.
  • Harman-Thomas, J. M., K. J. Hughes, and M. Pourkashanian. 2022. The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide. Energy 255:124490. doi:10.1016/j.energy.2022.124490.
  • Heufer, K., and H. Olivier. 2010. Determination of ignition delay times of different hydrocarbons in a new high pressure shock tube. Shock. Waves 20 (4):307–16. doi:10.1007/s00193-010-0262-2.
  • Heufer, K. A., S. M. Sarathy, H. J. Curran, A. C. Davis, C. K. Westbrook, and W. J. Pitz. 2012. Detailed kinetic modeling study of n-pentanol oxidation. Energy Fuels 26 (11):6678–85. doi:10.1021/ef3012596.
  • Heufer, K., Y. Uygun, H. Olivier, S. Vranckx, C. Lee, and R. Fernandes (2011). Experimental study of the high-pressure ignition of alcohol based biofuels. In Proc. European Combust Meeting, Cardiff, U.K., June 29–July 1, 2011.
  • He, M., C. Wang, J. Chen, and X. Liu. 2018. Prediction of the critical properties of mixtures based on group contribution theory. J. Mol. Liq. 271:313–18. doi:10.1016/j.molliq.2018.08.048.
  • Iwamoto, Y., K. Noma, O. Nakayama, T. Yamauchi, and H. Ando. 1997. Development of gasoline direct injection engine. SAE Trans. 106:777–93.
  • Joback, K. G. (1984). A unified approach to physical property estimation using multivariate statistical techniques. Ph. D. thesis, Massachusetts Institute of Technology.
  • Kaminaga, T., K. Yamaguchi, S. Ratnak, J. Kusaka, T. Youso, T. Fujikawa, and M. Yamakawa (2019, September). A study on combustion characteristics of a high compression ratio si engine with high pressure gasoline injection. SAE Technical Papers 2019-September (September). SAE 14th International Conference on Engines and Vehicles, Capri, Napoli (Italy), ICE; 15-09-2019 Through 19-09-2019.
  • Kéromnès, A., W. K. Metcalfe, K. A. Heufer, N. Donohoe, A. K. Das, C.-J. Sung, J. Herzler, C. Naumann, P. Griebel, O. Mathieu, et al. 2013. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combust. Flame 160(6):995–1011. doi:10.1016/j.combustflame.2013.01.001.
  • Kiran, E., P. G. Debenedetti, and C. J. Peters. 2012. Supercritical fluids: Fundamentals and applications, Vol. 366. Springer Dordrecht: Springer Science & Business Media.
  • Kogekar, G., C. Karakaya, G. J. Liskovich, M. A. Oehlschlaeger, S. C. DeCaluwe, and R. J. Kee. 2018. Impact of non-ideal behavior on ignition delay and chemical kinetics in high-pressure shock tube reactors. Combust. Flame 189:1–11. doi:10.1016/j.combustflame.2017.10.014.
  • Lan, T., Y. Wang, R. Ali, H. Liu, X. Liu, and M. He. 2022. Prediction and measurement of critical properties of gasoline surrogate fuels and biofuels. Fuel Process. Technol. 228:107156. doi:10.1016/j.fuproc.2021.107156.
  • Lee, J., R. Patel, A. Schonborn, N. Ladommatos, and C. Bae. 2009. Effect of biofuels on nanoparticle emissions from spark-and compression-ignited single-cylinder engines with same exhaust displacement volume. Energy Fuels 23 (9):4363–69. doi:10.1021/ef9004708.
  • Liang, W., W. Li, and C. K. Law. 2019. Laminar flame propagation in supercritical hydrogen/air and methane/air mixtures. Proc. Combust. Inst. 37 (2):1733–39. doi:10.1016/j.proci.2018.06.070.
  • Li, X., D. Li, P. Dimitriou, T. Ajmal, A. Aitouche, R. Mobasheri, O. Rybdylova, Y. Pei, and Z. Peng. 2023. Comparative investigation on macroscopic and microscopic characteristics of impingement spray of gasoline and ethanol from a gdi injector under injection pressure up to 50 mpa. Energy Rep. 9:1910–18. doi:10.1016/j.egyr.2023.01.024.
  • Li, X., Y. Qiang Pei, J. Qin, D. Zhang, K. Wang, and B. Xu. 2018. Effect of ultra-high injection pressure up to 50 mpa on macroscopic spray characteristics of a multi-hole gasoline direct injection injector fueled with ethanol. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 232 (8):1092–104. doi:10.1177/0954407017726720.
  • Liu, Y., M. Jia, M. Xie, and B. Pang. 2013. Improvement on a skeletal chemical kinetic model of iso-octane for internal combustion engine by using a practical methodology. Fuel 103:884–91. doi:10.1016/j.fuel.2012.07.046.
  • Liu, Y., Y. Pei, Z. Peng, J. Qin, Y. Zhang, Y. Ren, and M. Zhang. 2017. Spray development and droplet characteristics of high temperature single-hole gasoline spray. Fuel 191:97–105. doi:10.1016/j.fuel.2016.11.068.
  • Li, S., G. Williams, and Y. Guo. 2016. Health benefits from improved outdoor air quality and intervention in china. Environ. Pollut. 214:17–25. doi:10.1016/j.envpol.2016.03.066.
  • Lu, T., and C. K. Law. 2006a. Linear time reduction of large kinetic mechanisms with directed relation graph: N-heptane and iso-octane. Combust. Flame 144 (1–2):24–36. doi:10.1016/j.combustflame.2005.02.015.
  • Lu, T., and C. K. Law. 2006b. On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combust. Flame 146 (3):472–83. doi:10.1016/j.combustflame.2006.04.017.
  • Mardani, A., and E. Barani. 2018. Numerical investigation of supercritical combustion of h2–o2. Energy Fuels 32 (3):3851–68. doi:10.1021/acs.energyfuels.7b03025.
  • Mayer, W., A. Schik, M. Schaf Fler, and H. Tamura. 2000. Injection and mixing processes in high-pressure liquid oxygen/gaseous hydrogen rocket combustors. J. Propul. Power 16 (5):823–28. doi:10.2514/2.5647.
  • Mestas, P., P. Clayton, and K. Niemeyer. 2019. Pymars: Automatically reducing chemical kinetic models in python. J. Open Source Softw. 4 (41):1543. doi:10.21105/joss.01543.
  • Metcalfe, W. K., S. M. Burke, S. S. Ahmed, and H. J. Curran. 2013. A hierarchical and comparative kinetic modeling study of c1–c2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet. 45 (10):638–75. doi:10.1002/kin.20802.
  • Mittal, G., S. M. Burke, V. A. Davies, B. Parajuli, W. K. Metcalfe, and H. J. Curran. 2014. Autoignition of ethanol in a rapid compression machine. Combust. Flame 161 (5):1164–71. doi:10.1016/j.combustflame.2013.11.005.
  • Owczarek, I., and K. Blazej. 2003. Recommended critical temperatures. part i. aliphatic hydrocarbons. J. Phys. Chem. Ref. Data 32 (4):1411–27. doi:10.1063/1.1556431.
  • Owczarek, I., and K. Blazej. 2004. Recommended critical temperatures. part ii. aromatic and cyclic hydrocarbons. J. Phys. Chem. Ref. Data 33 (2):541–48. doi:10.1063/1.1647147.
  • Pepiot-Desjardins, P., and H. Pitsch. 2008. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154 (1–2):67–81. doi:10.1016/j.combustflame.2007.10.020.
  • Piock, W., G. Hoffmann, A. Berndorfer, P. Salemi, and B. Fusshoeller. 2011. Strategies towards meeting future particulate matter emission requirements in homogeneous gasoline direct injection engines. SAE Int. J. Engines 4 (1):1455–68. doi:10.4271/2011-01-1212.
  • Poling, B., J. Prausnitz, and J. O’Connell. 2001. The properties of gases and liquids. 5th ed. New York: McGraw-Hill.
  • Rabitz, H., M. Kramer, and D. Dacol. 1983. Sensitivity analysis in chemical kinetics. Annu. Rev. Phys. Chem. 34 (1):419–61. doi:10.1146/annurev.pc.34.100183.002223.
  • Roy, S., and O. Askari. 2020. A new detailed ethanol kinetic mechanism at engine-relevant conditions. Energy Fuels 34 (3):3691–708. doi:10.1021/acs.energyfuels.9b03314.
  • Sako, T. 2002. Supercritical fluids: Molecular interactions, physical properties, and new applications. Springer Berlin Heidelberg: Springer Science & Business Media.
  • Schick, L., and J. Prausnitz. 1968. On the correlation of critical properties of mixtures. AichE J. 14 (4):673–673. doi:10.1002/aic.690140432.
  • Schmitt, T. 2020. Large-eddy simulations of the mascotte test cases operating at supercritical pressure. Flow Turbul. Combust. 105 (1):159–89. doi:10.1007/s10494-019-00096-y.
  • Song, Y., Z. Zheng, T. Peng, Z. Yang, W. Xiong, and Y. Pei. 2020. Numerical investigation of the combustion characteristics of an internal combustion engine with subcritical and supercritical fuel. Appl. Sci. 10 (3):862. doi:10.3390/app10030862.
  • Stein, S. E., and R. L. Brown. 1994. Estimation of normal boiling points from group contributions. J. Chem. Inf. Comp. Sci. 34 (3):581–87. doi:10.1021/ci00019a016.
  • Szybist, J. P., A. D. Youngquist, T. L. Barone, J. M. Storey, W. R. Moore, M. Foster, and K. Confer. 2011. Ethanol blends and engine operating strategy effects on light-duty spark-ignition engine particle emissions. Energy Fuels 25 (11):4977–85. doi:10.1021/ef201127y.
  • Takacs, G. 2015. Chapter 2 - a review of production engineering fundamentals. In Sucker-rod pumping handbook, ed. G. Takacs, 13–56. Boston: Gulf Professional Publishing.
  • Thomson, G. H., D. G. Friend, R. L. Rowley, W. V. Wilding, and B. E. Poling. 2008. Physical and chemical data section 2. Perry’s Chem Eng Handbook. McGraw-Hill, New York. 1:2–48.
  • Turányi, T. 1990. Sensitivity analysis of complex kinetic systems. tools and applications. J Math Chem 5 (3):203–48. doi:10.1007/BF01166355.
  • Turner, J. W. G., A. G. J. Lewis, S. Akehurst, C. J. Brace, S. Verhelst, J. Vancoillie, L. Sileghem, F. C. P. Leach, and P. P. Edwards. 2020. Alcohol fuels for spark-ignition engines: Performance, efficiency, and emission effects at mid to high blend rates for ternary mixtures. Energies 13 (23):6390. doi:10.3390/en13236390.
  • Wang, H., Y. Ra, M. Jia, and R. D. Reitz. 2014. Development of a reduced n-dodecane-pah mechanism and its application for n-dodecane soot predictions. Fuel 136:25–36. doi:10.1016/j.fuel.2014.07.028.
  • Yamaguchi, A., L. Koopmans, A. Helmantel, J. Dillner, and P. Dahlander. 2020. Air motion induced by ultra-high injection pressure sprays for gasoline direct injection engines. SAE Int. J. Fuels Lubr. 13 (3):223–36. doi:10.4271/04-13-03-0014.
  • Yamaguchi, A., L. Koopmans, A. Helmantel, J. Dillner, and P. Dahlander. 2021. Spray behaviors and gasoline direct injection engine performance using ultrahigh injection pressures up to 1500 bar. SAE Int. J. Engines 15 (3–15–01–0007):167–83. doi:10.4271/03-15-01-0007.
  • Yamaguchi, A., L. Koopmans, A. Helmantel, F. P. Karrholm, and P. Dahlander (2019). Spray characterization of gasoline direct injection sprays under fuel injection pressures up to 150 mpa with different nozzle geometries. Technical report, SAE Technical Paper.
  • Yoshimura, K., K. Isobe, M. Kawashima, K. Yamaguchi, R. Sok, S. Tokuhara, and J. Kusaka. 2023. Effects of pre-spark heat release of ethanol-blended gasoline surrogate fuels on engine combustion behavior. SAE Int. J. Fuels Lubr. 17 (1). Publisher Copyright: 2023 SAE International. All rights reserved doi:10.4271/04-17-01-0003.
  • Zhang, Y., Q. Wang, R. Yang, Y. Yan, F. Jiahong, and Z. Liu. 2022 03. Numerical investigation of the effect of injection timing on the in-cylinder activity of a gasoline direct injection engine. Adv. Mech. Eng. 14 (3):168781322210828. doi:10.1177/16878132221082873.
  • Zhang, Q., J. Xia, Z. He, J. Wang, R. Liu, L. Zheng, Y. Qian, D. Ju, and X. Lu. 2021. Experimental study on spray characteristics of six-component diesel surrogate fuel under sub/trans/supercritical conditions with different injection pressures. Energy 218:119474. doi:10.1016/j.energy.2020.119474.
  • Zong, N., H. Meng, S.-Y. Hsieh, and V. Yang. 2004. A numerical study of cryogenic fluid injection and mixing under supercritical conditions. Phys. Fluids 16 (12):4248–61. doi:10.1063/1.1795011.