27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation of DME-O2 Combustion in a Hollow Cone Impinging Jet Combustor for Direct-Fired Supercritical CO2 Power Cycle

, , , , , & show all
Received 24 Dec 2023, Accepted 23 Apr 2024, Published online: 03 May 2024

References

  • Abdul-Sater, H., J. Lenertz, C. Bonilha, X. Lu, and J. Fetvedt. 2017. A CFD simulation of coal syngas oxy-combustion in a high-pressure supercritical CO2 environment. Proc. ASME Turbo Expo. (4A–2017):1–12. doi:10.1115/GT2017-63821.
  • Chan, W., T. Morosuk, X. Li, and H. Li. 2023. Allam cycle: Review of research and development. Energy Convers. Manag. 294:117607. doi:10.1016/J.ENCONMAN.2023.117607.
  • Curran, H. J., S. L. Fischer, and F. L. Dryer. 2000. The reaction kinetics of dimethyl ether. II: Low-temperature oxidation in flow reactors. Int. J. Chem. Kinet. 32:741–59. doi:10.1002/1097-4601(2000)32:12<741::aid-kin2>3.3.co;2-0.
  • Delimont, J., N. Andrews, and L. Chordia. 2018. Computational modeling of a 1MW scale combustor for a direct fired sCO2 power cycle. Proc. ASME Turbo Expo. 9. doi:10.1115/GT2018-77087.
  • Fang, Z., X. Dong, X. Tang, Z. Lv, X. Qiao, L. Wang, C. Sun,X. Yu. 2023. Study on supercritical CO2 power cycles for natural gas engine energy cascade utilization. Appl. Therm. Eng. 225:120255. doi:10.1016/J.APPLTHERMALENG.2023.120255.
  • Fu, Y., L. Cai, R. Yan, and Y. Guan. 2023. Thermodynamic analysis of the biomass gasification Allam cycle. Fuel 350:128781. doi:10.1016/J.FUEL.2023.128781.
  • Gran, I. R., and B. F. Magnussen. 1996. A numerical study of a Bluff-Body Stabilized Diffusion Flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol. 119:191–217. doi:10.1080/00102209608951999.
  • Harman-Thomas, J. M., K. J. Hughes, and M. Pourkashanian. 2022. The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide. Energy 255:124490. doi:10.1016/j.energy.2022.124490.
  • Hussain, M., A. Abdelhafez, M. A. Nemitallah, A. A. Araoye, R. Ben-Mansour, and M. A. Habib. 2020. A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines. Appl. Energy 279:115818. doi:10.1016/J.APENERGY.2020.115818.
  • Indelicato, G., P. E. Lapenna, R. Concetti, M. Caputo, M. Valorani, G. Magnotti, and F. Creta. 2020. Numerical investigation of high pressure CO2-diluted combustion using a Flamelet-based Approach. Combustion Science And Technology 192 (11):2028–49. doi:10.1080/00102202.2020.1811243.
  • Iwai, Y., M. Itoh, Y. Morisawa, S. Suzuki, D. Cusano, and M. Harris. 2015. Development approach to the combustor of gas turbine for oxyfuel, supercritical CO2 cycle. Proc. ASME Turbo Expo. 9:1–7. doi:10.1115/GT2015-43160.
  • Kasuya, H., Y. Iwai, M. Itoh, Y. Morisawa, T. Nishiie, R. Kai, R. Kurose. 2022. Les/flamelet/ANN of oxy-fuel combustion for a supercritical CO2 power cycle. Appl. Energy Combust. Sci. 12:100083. doi:10.1016/J.JAECS.2022.100083.
  • Keum, K., Y. Park, H. Lee, S. Chang, H. Do, D. K. Lee, and S. Kang. 2022. Large eddy simulation of turbulent partially premixed flames in oxy-fuel combustor under subcritical and supercritical conditions. J. Mech. Sci. Technol. 36 (4):1825–34. doi:10.1007/s12206-022-0319-z.
  • Komarov, I., D. Kharlamova, A. Vegera, and B. Makhmutov. 2021. Principal design of methane-oxygen combustion chamber with supercritical CO2. ARPN J. Eng. Appl. Sci. 16:673–78.
  • Lacaze, G., and J. C. Oefelein. 2012. A non-premixed combustion model based on flame structure analysis at supercritical pressures. Combust Flame 159 (6):2087–103. doi:10.1016/J.COMBUSTFLAME.2012.02.003.
  • Li, B., S. Wang, J. Qiao, B. Wang, and L. Song. 2021. Thermodynamic analysis and optimization of a dual-pressure Allam cycle integrated with the regasification of liquefied natural gas. Energy Convers. Manag. 246:114660. doi:10.1016/J.ENCONMAN.2021.114660.
  • Olajire, A. A. 2010. CO2 capture and separation technologies for end-of-pipe applications – a review. Energy 35 (6):2610–28. doi:10.1016/J.ENERGY.2010.02.030.
  • Sasaki, T., M. Itoh, H. Maeda, J. Tominaga, D. Saito, and Y. Niizeki. 2017. Development of turbine and combustor for a semi-closed recuperated Brayton cycle of supercritical carbon dioxide. Am. Soc. Mech. Eng. Power Div. POWER 1:1–6. doi:10.1115/POWER-ICOPE2017-3419.
  • Strakey, P. A. 2019. Oxy-combustion modeling for Direct-Fired Supercritical CO2 Power Cycles. J. Energy Resour. Technol. ASME 141 (7):141. doi:10.1115/1.4043124.
  • Tian, Y., H. Feng, Y. Zhang, Q. Li, and D. Liu. 2023. New insight into Allam cycle combined with coal gasification in supercritical water. Energy Convers. Manag. 292:117432. doi:10.1016/J.ENCONMAN.2023.117432.
  • Vasu, S. S., O. M. Pryor, J. S. Kapat, A. Masunov, S. M. Martin. 2016. Developing a validated chemical kinetics model for sCO 2 combustion and implementation in CFD. Proc. Supercritical CO2 Power Cycles Symp, March 28-31, 2016, San Antonio, Texas, United States.
  • Xie, M., S. Liu, L. Chen, Y. Zhang, Y. Wang, S. Xie, and Y. Zhao. 2023. Techno-economic and environmental assessment of a novel co-generation system integrating heat pump with Allam cycle. Energy Convers. Manag. 277:116606. doi:10.1016/J.ENCONMAN.2022.116606.
  • Xin, T., C. Xu, Y. Liu, and Y. Yang. 2021. Thermodynamic analysis of a novel zero carbon emission coal-based polygeneration system incorporating methanol synthesis and Allam power cycle. Energy Convers. Manag. 244:114441. doi:10.1016/J.ENCONMAN.2021.114441.
  • Xin, T., C. Xu, Y. Zhang, L. Yu, H. Xu, and Y. Yang. 2024. Process splitting analysis and thermodynamic optimization of the Allam cycle with turbine cooling and recompression modification. Energy 286:129458. doi:10.1016/J.ENERGY.2023.129458.
  • Xu, H., C. Xu, H. Guo, R. Li, T. Xin, and Y. Yang. 2023. Thermodynamic analysis and numerical optimization of a coal-based Allam cycle with full water quench syngas cooling. Energy Convers. Manag. 297:117716. doi:10.1016/J.ENCONMAN.2023.117716.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.