27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Temperatures on Flame Propagation of Diethyl Ether Spray Explosion

, , , , &
Received 27 Nov 2023, Accepted 24 Apr 2024, Published online: 02 May 2024

References

  • Astbury, G. R. 2008. A review of the properties and hazards of some alternative fuels. Process Saf. Environ. Prot. 86 (6):397–414. doi:10.1016/j.psep.2008.05.001
  • Badawy, T., H. Xu, and Y. Li. 2022. Macroscopic spray characteristics of iso-octane, ethanol, gasoline and methanol from a multi-hole injector under flash boiling conditions. Fuel 307:121820. doi:10.1016/j.fuel.2021.121820
  • Bai, C., W. Liu, J. Yao, X. Zhao, and B. Sun. 2020. Explosion characteristics of liquid fuels at low initial ambient pressures and temperatures. Fuel 265:116951. doi:10.1016/j.fuel.2019.116951
  • Bai, C., and Y. Wang. 2015. Study of the explosion parameters of vapor–liquid diethyl ether/air mixtures. J. Loss Prev. Process Ind. 38:139–47. doi:10.1016/j.jlp.2015.09.007
  • Beeckmann, J., L. Cai, and H. Pitsch. 2014. Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure. Fuel 117:340–50. doi:10.1016/j.fuel.2013.09.025
  • Burgoyne, J. H., and L. Cohen. 1997. The effect of drop size on flame propagation in liquid aerosols. Proc. R. Soc. Lond. A 225 (1162):375–92. doi:10.1098/rspa.1954.0210
  • Cashdollar, K. L., and M. Hertzberg. 1985. 20‐l explosibility test chamber for dusts and gases. Rev. Sci. Instrum. 56 (4):596–602. doi:10.1063/1.1138295
  • Grabarczyk, M., A. Teodorczyk, V. Di Sarli, and A. Di Benedetto. 2016. Effect of initial temperature on the explosion pressure of various liquid fuels and their blends. J. Loss Prev. Process Ind. 44:775–79. doi:10.1016/j.jlp.2016.08.013
  • Guo, C., H. Shao, S. Jiang, Y. Wang, K. Wang, and A. Z. Wu. 2020. Effect of low-concentration coal dust on gas explosion propagation law. Powder Technol. 367:243–52. doi:10.1016/j.powtec.2020.03.045
  • Guo, S., F. Wu, H. Wang, X. Pan, X. Zang, M. Hua, and J. Jiang. 2024. Evolution characteristics of ethyl ether spray explosion process in 20L near-spherical vessel. Fuel 357:129736. doi:10.1016/j.fuel.2023.129736
  • Heye, C., V. Raman, and A. R. Masri. 2015. Influence of spray/combustion interactions on auto-ignition of methanol spray flames. Proc. Combust. Inst. 35 (2):1639–48. doi:10.1016/j.proci.2014.06.087
  • Jiang, H., M. Bi, Z. Gao, Z. Zhang, and W. Gao. 2022. Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions. Energy 239:239. doi:10.1016/j.energy.2021.122246
  • Jiang, J., Y. Liu, C. V. Mashuga, and M. S. Mannan. 2015. Validation of a new formula for predicting the lower flammability limit of hybrid mixtures. J. Loss Prev. Process Ind. 35:52–58. doi:10.1016/j.jlp.2015.03.008
  • Jiao, F., H. Zhang, W. Li, Y. Zhao, J. Guo, X. Zhang, W. Cao, and Y. Zhang. 2022. Experimental and numerical study of the influence of initial temperature on explosion limits and explosion process of syngas-air mixtures. Int. J. Hydrogen Energy 47 (52):22261–72. doi:10.1016/j.ijhydene.2022.05.017
  • Ji, W., Y. Wang, J. Yang, J. He, X. Wen, and Y. Wang. 2022. Methods to predict variations of lower explosion limit associated with hybrid mixtures of flammable gas and dust. Fuel 310:310. doi:10.1016/j.fuel.2021.122138
  • Ji, C., S. Yuan, Z. Jiao, M. Huffman, M. M. El-Halwagi, and Q. Wang. 2021. Predicting flammability-leading properties for liquid aerosol safety via machine learning. Process Saf. Environ. Prot. 148:1357–66. doi:10.1016/j.psep.2021.03.012
  • Kai, L., C. Chong, S. Maohui, Z. Wenhua, W. Qiyang, O. Francis, L. Longhao, and X. Cangsu. 2022. Experimental study of the macroscopic characteristics of methanol low‐pressure injection spray. Int. J. Energy Res. 46 (15):23259–72. doi:10.1002/er.8625
  • Kourmatzis, A., P. X. Pham, and A. R. Masri. 2015. Characterization of atomization and combustion in moderately dense turbulent spray flames. Combust. Flame 162 (4):978–96. doi:10.1016/j.combustflame.2014.09.021
  • Krishna, K., W. J. Rogers, and M. S. Mannan. 2003. The use of aerosol formation, flammability, and explosion information for heat-transfer fluid selection. J. Hazard Mater 104 (1–3):215–26. doi:10.1016/S0304-3894(03)00273-5
  • Krisman, A., E. R. Hawkes, and J. H. Chen. 2018. The structure and propagation of laminar flames under autoignitive conditions. Combust. Flame 188:399–411. doi:10.1016/j.combustflame.2017.09.012
  • Liang, W., J. Liu, and C. K. Law. 2017. On explosion limits of H2/CO/O2 mixtures. Combust. Flame 179:130–37. doi:10.1016/j.combustflame.2017.01.024
  • Liang, W., Z. Liu, and C. K. Law. 2019. Explosion limits of H2/CH4/O2 mixtures: Analyticity and dominant kinetics. Proc. Combust. Inst. 37 (1):493–500. doi:10.1016/j.proci.2018.07.059
  • Lina, Q. U., W. Haiyan, Z. U. O. Dongfang, and S. Jing 2011. The experimental study of type K or S condensed aerosol on inhibition of gas explosion. Proc. Eng. 26:582–87. doi:10.1016/j.proeng.2011.11.2209
  • Lipatnikov, A. N., and J. Chomiak 2010. Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36 (1):1–102. doi:10.1016/j.pecs.2009.07.001
  • Liu, X., Q. Zhang, and Y. Wang 2015a. Influence of particle size on the explosion parameters in two-phase vapor–liquid n-hexane/air mixtures. Process Saf. Environ. Prot. 95:184–94. doi:10.1016/j.psep.2015.03.006
  • Liu, X., Q. Zhang, and Y. Wang 2015b. Influence of vapor-liquid two-phasen-heptane on the explosion parameters in air. Combust. Sci. Technol. 187 (12):1879–904. doi:10.1080/00102202.2015.1069282
  • Li, M., H. Wang, D. Wang, Z. Shao, and S. He. 2020. Risk assessment of gas explosion in coal mines based on fuzzy AHP and bayesian network. Process Saf. Environ. Prot. 135:207–18. doi:10.1016/j.psep.2020.01.003
  • Lyu, Q., X. Zang, X. Pan, P. Ma, H. Yu, and J. Jiang. 2019. Effects of temperature and concentration on characteristic parameters of methanol explosion. Explos. Shock Waves 39:149–157.
  • Matzen, M., and Y. Demirel 2016. Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: Alternative fuels production and life-cycle assessment. J. Cleaner Prod. 139:1068–77. doi:10.1016/j.jclepro.2016.08.163
  • Mittal, M. 2017. Explosion pressure measurement of methane-air mixtures in different sizes of confinement. J. Loss Prev. Process Ind. 46:200–08. doi:10.1016/j.jlp.2017.02.022
  • Mitu, M., and E. Brandes. 2015. Explosion parameters of methanol–air mixtures. Fuel 158:217–23. doi:10.1016/j.fuel.2015.05.024
  • Mitu, M., and E. Brandes. 2017. Influence of pressure, temperature and vessel volume on explosion characteristics of ethanol/air mixtures in closed spherical vessels. Fuel 203:460–68. doi:10.1016/j.fuel.2017.04.124
  • Mitu, M., E. Brandes, and W. Hirsch. 2018. Mitigation effects on the explosion safety characteristic data of ethanol/air mixtures in closed vessel. Process Saf. Environ. Prot. 117:190–99. doi:10.1016/j.psep.2018.04.024
  • Mukhopadhyay, S., and J. Abraham. 2011. Influence of compositional stratification on autoignition in n-heptane/air mixtures. Combust. Flame 158 (6):1064–75. doi:10.1016/j.combustflame.2010.10.007
  • Myers, G. D., and A. H. Lefebvre. 1986. Flame propagation in heterogeneous mixtures of fuel drops and AIR. Combust. Flame 66 (2):193–210. doi:10.1016/0010-2180(86)90091-X
  • Pang, L., J. Cao, R. Ma, Y. Zhao, and K. Yang. 2021. Risk assessment method of polyethylene dust explosion based on explosion parameters. J. Loss Prev. Process Ind. 69:69. doi:10.1016/j.jlp.2021.104397
  • Saeed, K. 2017. Determination of the explosion characteristics of methanol – air mixture in a constant volume vessel. Fuel 210:729–37. doi:10.1016/j.fuel.2017.09.004
  • Song, B., W. Jiao, K. Cen, X. Tian, H. Zhang, and W. Lu 2021. Quantitative risk assessment of gas leakage and explosion accident consequences inside residential buildings. Eng. Fail Anal. 122:122. doi:10.1016/j.engfailanal.2021.105257
  • Sun, Y., X. Qian, M. Yuan, Q. Zhang, and Z. Li 2021. Investigation on the explosion limits and flame propagation characteristics of premixed methanol-gasoline blends. Case Stud. Therm. Eng. 26:26. doi:10.1016/j.csite.2021.101000
  • Sun, K., and Q. Zhang. 2021. Experimental study of the explosion characteristics of isopropyl nitrate aerosol under high-temperature ignition source. J. Hazard Mater 415:125634. doi:10.1016/j.jhazmat.2021.125634
  • Sun, K., Q. Zhang, W. Wang, and S. Niu. 2022. Experimental study on explosion parameters of ethanol aerosol under high-temperature source ignition. Fuel 311:311. doi:10.1016/j.fuel.2021.122610
  • Torrado, D., V. Buitrago, P. A. Glaude, and O. Dufaud. 2017. Explosions of methane/air/nanoparticles mixtures: Comparison between carbon black and inert particles. Process Saf. Environ. Prot. 110:77–88. doi:10.1016/j.psep.2017.04.014
  • Van Den Schoor, F., and F. Verplaetsen. 2006. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures. J. Hazard Mater. 128 (1):1–9. doi:10.1016/j.jhazmat.2005.06.043
  • Vatn, J. 1998. A discussion of the acceptable risk problem. Reliab. Eng. Syst. Saf. 61 (1–2):11–19. doi:10.1016/S0951-8320(97)00061-6
  • Wang, Y., W. Li, Q. Chang, and J. Rcheng. 2021. Measurements of explosion parameters for diethyl ether/air mixtures at pre-ignition quasi-isotropic turbulence. Fuel 292:120224. doi:10.1016/j.fuel.2021.120224
  • Wang, G., Y. Li, L. Li, and F. Qi 2018. Experimental and theoretical investigation on cellular instability of methanol/air flames. Fuel 225:95–103. doi:10.1016/j.fuel.2018.03.160
  • Wang, Z., H. Liu, and R. D. Reitz. 2017. Knocking combustion in spark-ignition engines. Prog. Energy Combust. Sci. 61:78–112. doi:10.1016/j.pecs.2017.03.004
  • Wang, T., Z. Luo, H. Wen, F. Cheng, L. Liu, Y. Su, C. Liu, J. Zhao, J. Deng, and M. Yu. 2021. The explosion enhancement of methane-air mixtures by ethylene in a confined chamber. Energy 214:119042. doi:10.1016/j.energy.2020.119042
  • Wan, H., Q. Wen, and Q. Zhang. 2022. Detonation process of high-speed flowing multiphase energetic mixture under high temperature and high pressure. Combust. Flame 246:112417. doi:10.1016/j.combustflame.2022.112417
  • Wu, F., X. H. Pan, H. Wang, M. Hua, H. Yu, X. W. Zang, and A. J. C. Jiang. 2022a. Experimental study on the explosion characteristic and flame propagation of methanol spray at different injection pressures. Fuel 325:16. doi:10.1016/j.fuel.2022.124746
  • Wu, F., H. Wang, H. Yu, X. W. Zang, X. H. Pan, M. Hua, and J. C. Jiang. 2022b. Experimental study on the lower explosion limit and mechanism of methanol pre-mixed spray under negative pressure. Fuel 321:11. doi:10.1016/j.fuel.2022.124049
  • Wu, X.-I., S. Xu, A.-M. Pang, W.-G. Cao, D.-B. Liu, X.-Y. Zhu, F.-Y. Xu, and X. Wang. 2021. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M = Mg, Ti, Zr) of energetic materials. Def. Technol. 17 (4):1262–68. doi:10.1016/j.dt.2020.06.011
  • Wu, F., H. Yu, X. H. Pan, X. W. Zang, M. Hua, H. Wang, and J. C. Jiang. 2022c. Experimental study of methanol atomization and spray explosion characteristic under negative pressure. Process Saf. Environ. Prot. 161:162–74. doi:10.1016/j.psep.2022.03.029
  • Yao, J., C. Zhang, W. Liu, C. Bai, X. Zhao, B. Sun, and N. Liu. 2021. The explosion characteristics of diethyl ether-al mixtures under different ambient conditions. Combust. Flame 227:162–71. doi:10.1016/j.combustflame.2020.12.052
  • Yuan, S., C. Ji, H. Han, Y. Sun, and C. V. Mashuga. 2021. A review of aerosol flammability and explosion related incidents, standards, studies, and risk analysis. Process Saf. Environ. Prot. 146:499–514. doi:10.1016/j.psep.2020.11.032
  • Yuan, Z., N. Khakzad, F. Khan, and P. Amyotte. 2015. Risk analysis of dust explosion scenarios using Bayesian networks. Risk Anal. 35 (2):278–91. doi:10.1111/risa.12283
  • Yuan, S., Z. Zhang, Y. Sun, J. S. Kwon, and C. V. Mashuga. 2020. Liquid flammability ratings predicted by machine learning considering aerosolization. J. Hazard Mater 386:121640. doi:10.1016/j.jhazmat.2019.121640
  • Zang, X. 2021. Experimental study on explosion characteristics of methanol spray droplets in 20 L near-spherical container. J. Saf. Sci. Technol. 17 (11):25–31.
  • Zang, X., H. Yu, Q. Lyu, X. Pan, and J. Jiang. 2020. Formation and explosion characteristics of methanol spray droplets in confined space. Explos. Shock Waves 40:32–41.
  • Zeng, W., M. XU, G. Zhang, Y. Zhang, and D. J. Cleary. 2012. Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels. Fuel 95:287–97. doi:10.1016/j.fuel.2011.08.048
  • Zhang, C., C. Bai, and J. Yao. 2022. Liquid component effect on the dispersion and explosion characteristics of solid-liquid mixed fuel. Fuel 319:319. doi:10.1016/j.fuel.2022.123806
  • Zhang, H., Z. Wang, Y. He, J. Xia, J. Zhang, H. Zhao, and K. Cen. 2021. Ignition, puffing and sooting characteristics of kerosene droplet combustion under sub-atmospheric pressure. Fuel 285:285. doi:10.1016/j.fuel.2020.119182
  • Zhang, X., C. Yuan, L. Zhou, W. Zhao, Z. Liu, and H. Wei. 2021. Effects of initial temperature on ignition and flame propagation of dual-fuel mixture in mixing layer. Combust. Flame 225:468–84. doi:10.1016/j.combustflame.2020.11.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.