50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect and Mechanism of NH4H2PO4/Montmorillonite Composite Powder on Al-Mg Alloy Dust Explosion

, , , , &
Received 01 Mar 2024, Accepted 24 Apr 2024, Published online: 02 May 2024

References

  • Amyotte, P. R. 2006. Solid inertants and their use in dust explosion prevention and mitigation. J. Loss Prev. Proc. Ind. 19 (2–3):161–73. doi:10.1016/j.jlp.2005.05.008.
  • Amyotte, P. R., and M. J. Pegg. 1992a. Dust explosion prevention by addition of thermal inhibitors. Plant/Oper. Prog. 11 (3):166–73. doi:10.1002/prsb.720110312.
  • Amyotte, P. R., and M. J. Pegg. 1992b. Dust explosion prevention by addition of thermal inhibitors. Proc. Saf. Prog. 11 (3):166–73. doi:10.1002/prsb.720110312.
  • Babushok, V. I., G. T. Linteris, P. Hoorelbeke, D. Roosendans, and K. Van Wingerden. 2017. Flame inhibition by potassium-containing compounds. Combust. Sci. Technol. 189 (12):2039–55. doi:10.1080/00102202.2017.1347162.
  • Bee, S.-L., M. A. A. Abdullah, S.-T. Bee, L. T. Sin, and A. R. Rahmat. 2018. Polymer nanocomposites based on silylated-montmorillonite: A review. Prog. Polym. Sci. 85:57–82. doi:10.1016/j.progpolymsci.2018.07.003.
  • Bradley, D., and G. M. Faeth. 1995. Special issue - 25th symposium (international) on combustion papers. Combust. Flame 100 (3):349–349. doi:10.1016/0010-2180(95)90082-9.
  • Catoire, L., J. F. Legendre, and M. Giraud. 2003. Kinetic model for aluminum-sensitized ram accelerator combustion. J. Propul. Power 19 (2):196–202. doi:10.2514/2.6118.
  • Cheng, C., Q. Le, X. Li, C. Hu, L. Bao, and Y. Jia. 2020. Understanding on ignition mechanism of Mg-xAl (x=0, 3, 6 and 8wt. %) alloys in atmospheric environment. Corros. Sci. 168:108565. doi:10.1016/j.corsci.2020.108565.
  • Chen, G., X. Meng, X. Li, K. Yan, and Y. Liu. 2022. Experiment on influence of inert powder on deflagration of oil shale dust research. Process Saf. Prog. 41 (2):372–83. doi:10.1002/prs.12312.
  • Chen, K., Y. Zhang, P. Zhang, L. Li, J. Chen, Z. Pan, R. Li, and M. He. 2022. Preparation of green flame suppressor and study on flame propagation inhibition characteristics of coal dust. Adv. Powder Technol. 33 (11):103749. doi:10.1016/j.apt.2022.103749.
  • Dai, L., L. Hao, W. Kang, W. Xu, N. Shi, and H. Wei. 2020. Inhibition of different types of inert dust on aluminum powder explosion. Chin. J. Chem. Eng. 28 (7):1941–49. doi:10.1016/j.cjche.2020.02.021.
  • Dai, W. J., X. B. Meng, S. X. Yao, J. Q. Liu, Z. F. Wang, Y. Liu, P. P. Yang, and F. Li. 2023. Study on inhibition effect and mechanism of NH4H2PO4 on explosion of titanium powder. Mol. Cryst. Liq. Cryst. 759 (1):116–30. doi:10.1080/15421406.2022.2164432.
  • Dai, H., H. Yin, and C. Zhai. 2022. Experimental investigation on the inhibition of coal dust deflagration by the composite inhibitor of floating bead and melamine cyanurate. Energy 261:261. doi:10.1016/j.energy.2022.125207.
  • Guan, W. 2021. Inhibition effect and mechanism of inorganic inert medium on flour explosion. China Powder Technol. 27:65–70 doi:10.13732/j.issn.1008-5548.2021.01.008.
  • Hong, S., Z. Liu, E. Zhao, S. Lin, L. Qiu, J. Qian, H. Liu, and S. Xia. 2017. Comparison of behavior and microscopic characteristics of first and secondary explosions of coal dust. J. Loss Prev. Process Ind. 49:382–94. doi:10.1016/j.jlp.2017.08.005.
  • Hou, X. J., H. Li, Q. Liu, H. Cheng, P. He, and S. Lia. 2015. Theoretical study for the interlamellar aminoalcohol functionalization of kaolinite. Appl. Surf. Sci. 347:439–47. doi:10.1016/j.apsusc.2015.04.117.
  • Jayaweera, T. M., C. F. Melius, W. J. Pitz, C. K. Westbrook, O. P. Korobeinichev, V. M. Shvartsberg, A. G. Shmakov, I. V. Rybitskaya, and H. J. Curran. 2005. Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios. Combust. Flame 140 (1–2):103–15. doi:10.1016/j.combustflame.2004.11.001.
  • Jiang, H., M. Bi, W. Gao, B. Gan, D. Zhang, and Q. Zhang. 2018. Inhibition of aluminum dust explosion by NaHCO3 with different particle size distributions. J. Hazard. Mater 344:902–12. doi:10.1016/j.jhazmat.2017.11.054.
  • Jiang, H., M. Bi, B. Li, D. Ma, and W. Gao. 2019. Flame inhibition of aluminum dust explosion by NaHCO3 and NH4H2PO4. Combust. Flame 200:97–114. doi:10.1016/j.combustflame.2018.11.016.
  • Jiang, H., M. Bi, B. Li, D. Zhang, and W. Gao. 2019. Inhibition evaluation of ABC powder in aluminum dust explosion. J. Hazard. Mater 361:273–82. doi:10.1016/j.jhazmat.2018.07.045.
  • Jiang, H., M. Bi, Q. Peng, and W. Gao. 2020. Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4. Renew. Energy 147:2046–55. doi:10.1016/j.renene.2019.10.026.
  • Jiang, M., Y. Zhang, Y. Yu, Q. Zhang, B. Huang, Z. Chen, T. Chen, and J. Jiang. 2019. Flame retardancy of unsaturated polyester composites with modified ammonium polyphosphate, montmorillonite, and zinc borate. J. Appl. Polym. Sci. 136 (11). doi:10.1002/app.47180.
  • Jinhua Sun, W. Q., and J. J. Wait 2011. Fine structure of flame and its propagation dynamics.
  • Komadel, P. 2016. Acid activated clays: Materials in continuous demand. Appl. Clay. Sci. 131:84–99. doi:10.1016/j.clay.2016.05.001.
  • Kuang, K., W. K. Chow, X. Ni, D. Yang, W. Zeng, and G. Liao. 2011. Fire suppressing performance of superfine potassium bicarbonate powder. Fire Mater. 35 (6):353–66. doi:10.1002/fam.1058.
  • Li, Y. 2015. Study on explosion inhibition of metal dust by ammonium dihydrogen phosphate. Master’s thesis. North Central University.
  • Li, Q., B. Lin, H. Dai, and S. Zhao. 2012. Explosion characteristics of H2/CH4/air and CH4/coal dust/air mixtures. Powder Technol. 229:222–28. doi:10.1016/j.powtec.2012.06.036.
  • Li, C., Z. Li, H. Wang, S. Wang, H. Zhao, and J. Ma. 2024. The characteristics and microscopic mechanism of Al-mg alloy powder explosion inhibited by MCA and NaH2PO4. Fuel 357:129966. doi:10.1016/j.fuel.2023.129966.
  • Liu, R., R. L. Frost, W. N. Martens, and Y. Yuan. 2008. Synthesis, characterization of mono, di and tri alkyl surfactant intercalated Wyoming montmorillonite for the removal of phenol from aqueous systems. J. Colloid Interface Sci. 327 (2):287–94. doi:10.1016/j.jcis.2008.08.049.
  • Liu, X., J. Guo, W. Tang, H. Li, X. Gu, J. Sun, and S. ZHANG. 2019. Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Compos. - A: Appl. Sci. Manuf. 119:291–98. doi:10.1016/j.compositesa.2019.02.009.
  • Liu, Z., S. Lin, S. Zhang, E. Wang, and G. Liu. 2016. Observations of microscopic characteristics of post-explosion coal dust samples. J. Loss Prev. Proc. Ind. 43:378–84. doi:10.1016/j.jlp.2016.06.021.
  • Liu, J., X. Meng, K. Yan, Z. Wang, W. Dai, Z. Wang, F. Li, P. Yang, and Y. Liu. 2022. Study on the effect and mechanism of Ca(H2PO4)2 and CaCO3 powders on inhibiting the explosion of titanium powder. Powder Technol. 395:158–67. doi:10.1016/j.powtec.2021.09.067.
  • Liu, J., X. Meng, Y. Zhang, Z. Wang, P. Yang, F. Li, W. Dai, and Y. Liu. 2023. Study on inhibition of explosion of titanium powder by mesoporous calcium compound/carbonized chelating resin composite powder. Powder Technol. 420:118355. doi:10.1016/j.powtec.2023.118355.
  • Li, H. T., Y. Wang, and Z. Fan. 2012. Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al–mg alloys. Acta. Mater 60 (4):1528–37. doi:10.1016/j.actamat.2011.11.044.
  • Li, Q., C. Yuan, Q. Tao, Y. Zheng, and Y. Zhao. 2018. Experimental analysis on post-explosion residues for evaluating coal dust explosion severity and flame propagation behaviors. Fuel 215:417–28. doi:10.1016/j.fuel.2017.11.093.
  • Meng, F., X. Hou, P. Amyotte, C. Li, Y. Bu, G. Li, C. Yuan, and H. Chen. 2022. Opposite effects of typical solid inertants on flame propagation in Mg dust clouds versus dust layers. Fuel 324:124394. doi:10.1016/j.fuel.2022.124394.
  • Ni, X., K. Kuang, D. Yang, X. Jin, and G. Liao. 2009. A new type of fire suppressant powder of NaHCO3/zeolite nanocomposites with core–shell structure. Fire Saf. J. 44 (7):968–75. doi:10.1016/j.firesaf.2009.06.004.
  • Qiu, D., Z. Dong, L. Liu, C. Huang, Y. Yue, G. Zhang, L. Hao, and X. Chen. 2023. Preparation of modified fly ash-based, core–shell inhibitor and its effect on suppression of Al-mg alloy dust explosion. Chem. Eng. J. 468:143741. doi:10.1016/j.cej.2023.143741.
  • Ranganathan, S., M. Lee, V. Akkerman, and A. S. Rangwala. 2015. Suppression of premixed flames with inert particles. J. Loss Prev. Process Ind. 35:46–51. doi:10.1016/j.jlp.2015.03.009.
  • Sun, Y., B. Yuan, X. Chen, K. Li, L. Wang, Y. Yun, and A. Fan. 2019. Suppression of methane/air explosion by kaolinite-based multi-component inhibitor. Powder Technol. 343:279–86. doi:10.1016/j.powtec.2018.11.026.
  • Uddin, F. 2008. Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A-Phy. Metall. Mat. Sci. 39A (12):2804–14. doi:10.1007/s11661-008-9603-5.
  • Wang, Q., J. Deng, J. Sun, C.-M. Shu, Z. Luo, and B. Liu. 2016. Flame propagation characteristics and combustion mechanism of FeOOH-coated zirconium particles. J. Therm. Anal. Calorim. 126 (2):649–57. doi:10.1007/s10973-016-5545-0.
  • Wang, Y., H. Feng, Y. Zhang, C. Lin, L. Zheng, W. Ji, and X. Han. 2019. Suppression effects of hydroxy acid modified montmorillonite powders on methane explosions. Energies 12 (21):4068. doi:10.3390/en12214068.
  • Wang, Z., X. Meng, K. Yan, X. Ma, Q. Xiao, J. Wang, and J. Bai. 2020. Inhibition effects of Al(OH)3 and Mg(OH)2 on Al-mg alloy dust explosion. J. Loss Prev. Proc. Ind. 66:104206. doi:10.1016/j.jlp.2020.104206.
  • Wang, H., H. Xie, S. Wang, Z. Gao, C. Li, G.-H. Hu, and C. Xiong. 2018. Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets. Compos. - A: Appl. Sci. Manuf. 108:62–68. doi:10.1016/j.compositesa.2018.02.020.
  • Xie, X., C.-G. Yan, Y.-K. Wang, J.-R. Xu, and C.-G. Zhu. 2019. Preparation of aluminum nitride by combustion of a Mg-al alloy. Ceram. Int. 45 (15):18721–26. doi:10.1016/j.ceramint.2019.06.098.
  • Yan, K., and X. Meng. 2020. An investigation on the aluminum dust explosion suppression efficiency and mechanism of a NaHCO3/DE composite powder. Adv. Powder Technol. 31 (8):3246–55. doi:10.1016/j.apt.2020.06.014.
  • Yan, K., X. Meng, H. Sun, Y. Qian, L. Shi, Z. Pan, and Y. Zhang. 2023. Inhibition of aluminum powder explosion by sludge-based carbon nanotubes/phosphorus-nitrogen flame retardant composite powder: Mechanism and kinetic model. Adv. Powder Technol. 34 (9):104110. doi:10.1016/j.apt.2023.104110.
  • Yan, K., X. Meng, Z. Wang, Q. Xiao, X. Ma, and Z. Cui. 2022. Inhibition of aluminum powder explosion by a NaHCO3/Kaolin composite powder suppressant. Combust. Sci. Technol. 194 (4):815–31. doi:10.1080/00102202.2020.1786377.
  • Yan, X., and J. Yu. 2014. Dust explosion venting of small vessels at the elevated static activation overpressure. Powder Technol. 261:250–56. doi:10.1016/j.powtec.2014.04.043.
  • Yu, Y., Z. Chen, Q. Zhang, M. Jiang, Z. Zhong, T. Chen, and J. Jiang. 2019. Modified montmorillonite combined with intumescent flame retardants on the flame retardancy and thermal stability properties of unsaturated polyester resins. Polym. Adv. Technol. 30 (4):998–1009. doi:10.1002/pat.4533.
  • Yu, M., X. Wang, K. Zheng, S. Han, C. Chen, R. Si, and L. Wang. 2020. Investigation of methane/air explosion suppression by modified montmorillonite inhibitor. Proc. Saf. Environ. Prot. 144:337–48. doi:10.1016/j.psep.2020.07.050.
  • Zhang, S. 2007. Adsorption of Pb~ (2+) and p-nitrophenol by montmorillonite, kaolin and layered bimetallic hydroxide doctor, Shandong University.
  • Zhang, T., M. Bi, H. Jiang, and W. Gao. 2020. Suppression of aluminum dust explosions by expandable graphite. Powder Technol. 366:52–62. doi:10.1016/j.powtec.2020.02.053.
  • Zhang, Y., K. Xu, M. Li, B. Liu, B. Wang, J. Li, and X. Pei. 2021. Hydrogen inhibition in wet dust removal systems by using L-aspartic: A feasible way of hydrogen explosion control measures. J. Loss Prev. Process Ind. 73:104612. doi:10.1016/j.jlp.2021.104612.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.