173
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Therapeutic implications of glycogen synthase kinase-3β in Alzheimer’s disease: a novel therapeutic target

, &
Pages 603-619 | Received 27 Jan 2022, Accepted 10 Sep 2022, Published online: 10 Oct 2022

References

  • Heemels MT. Neurodegenerative diseases. Nature. 2016;539(7628):179–180.
  • Akhtar MN, Lam KW, Abas F, et al. New class of acetylcholinesterase inhibitors from the stem bark of Knemalaurina and their structural insights. Bioorg Med Chem Lett. 2011;21(13):4097–4103.
  • Abeliovich A, Gitler AD. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature. 2016;539(7628):207–216.
  • Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature. 2016;539(7628):187–196.
  • Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197–206.
  • Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–186.
  • Kennedy DO, Dodd FL, Robertson BC, et al. Monoterpenoid extract of sage (Salvia lavandulaefolia) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. J Psychopharmacol. 2011;25(8):1088–1100.
  • Mariani E, Polidori MC, Cherubini A, et al. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;827(1):65–75.
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.
  • Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314(5800):777–781.
  • Patterson C. World Alzheimer report. The State of the Art of Dementia Research: N Front. 2018;2018.
  • dos Santos Pisoni D, da Costa JS, Gamba D, et al. Synthesis and AChE inhibitory activity of new chiral tetrahydroacridine analogues from terpeniccyclanones. Eur J Med Chem. 2010;45(2):526–535.
  • Bagyinszky E, Youn YC, An SS, et al. The genetics of Alzheimer’s disease. Clin Interv Aging. 2014;9:535–551.
  • Kasper KP. Bioinorganic chemistry of Alzheimer’s disease. Chem Rev. 2012;112:5193–5239.
  • Yin KJ, Cirrito JR, Yan P, et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-β peptide catabolism. J Neurosci. 2006;26(43):10939–10948.
  • Iqbal K, Grundke-Iqbal I. Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med. 2008;12(1):38–55.
  • Mudher M, Lovestone S. Alzheimer’s disease- do tauists and baptists finally shake hands? Trends Neurosci. 2002;25(1):22–26.
  • Moore AH, O'Banion MK. Neuroinflammation and anti-inflammatory therapy for Alzheimer’s disease. Adv Drug Deliv Rev. 2002;54(12):1627–1656.
  • Ballatore C, Lee VM-Y, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663–672.
  • de La Torre JC. Vascular basis of Alzheimer’s pathology. Ann N Y Acad Sci. 2002;977:196–215.
  • Bonda DJ, Wang X, Perry G, et al. Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacol. 2010;59(4–5):290–294.
  • Dumont M, Beal MF. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med. 2011;51(5):1014–1026.
  • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–247.
  • Obulesu M, Venu R, Somashekhar R. Lipid peroxidation in Alzheimer’s disease: emphasis on metal-mediated neurotoxicity. Acta Neurol Scand. 2011;124(5):295–301.
  • Bush AI, Tanzi RE. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics. 2008;5(3):421–432.
  • Samudralwar DL, Diprete CC, Ni BF, et al. Elemental imbalances in the olfactory pathway in Alzheimer’s disease. J Neurol Sci. 1995;130(2):139–145.
  • Zatta P, Drago D, Bolognin S, et al. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci. 2009;30(7):346–355.
  • Schrag M, Crofton A, Zabel M, et al. Effect of cerebral amyloid angiopathy on brain iron, copper, and zinc in Alzheimer’s disease. J Alzheimers Dis. 2011;24(1):137–149.
  • Rulon LL, Robertson JD, Lovell MA, et al. Serum zinc levels and Alzheimer’s disease. Biol Trace Elem Res. 2000;75(1–3):79–85.
  • Panayi AE, Spyrou NM, Iversen BS, et al. Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol Sci. 2002;195(1):1–10.
  • de Jong LW, van der Hiele K, Veer IM, et al. Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain. 2008;131(Pt 12):3277–3285.
  • Talmard C, Yona RL, Faller P. Mechanism of zinc (II)-promoted amyloid formation: zinc (II) binding facilitates the transition from the partially α-helical conformer to aggregates of amyloid β protein (1-28). J Biol Inorg Chem. 2009;14(3):449–455.
  • Sengupta P, Garai K, Sahoo B, et al. The amyloid β peptide (Aβ1-40) is thermodynamically soluble at physiological concentrations. Biochemistry. 2003;42(35):10506–10513.
  • Tougu V, Karafin A, Zovo K, et al. Zinc (II)- and copper (II)-induced nonfibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators. J Neurochem. 2009;110(6):1784–1795.
  • Pedersen JT, Teilum K, Heegaard NH, et al. Rapid formation of a preoligomeric peptide–metal–peptide complex following copper (II) binding to amyloid β peptides. Angew Chem. 2011;123(11):2580–2583.
  • Schellenberg GD, Bird TD, Wijsman EM, et al. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science. 1992;258(5082):668–671.
  • Finckh U, Alberici A, Antoniazzi M, et al. Variable expression of familial Alzheimer disease associated with presenilin 2 mutation M239I. Neurology. 2000;54(10):2006–2008.
  • Drachman DA, Leavitt J. Human memory and the cholinergic system: a relationship to aging? Arch Neurol. 1974;30(2):113–121.
  • Bartus RT, Dean RL, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217(4558):408–414.
  • Gholivand K, Hosseini Z, Farshadian S, et al. Synthesis, characterization, oxidative degradation, antibacterial activity and acetylcholinesterase/butyrylcholinesterase inhibitory effects of some new phosphorus (V) hydrazides. Eur J Med Chem. 2010;45(11):5130–5139.
  • Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem. 2008;104(6):1433–1439.
  • Mobashir M, Madhusudhan T, Isermann B, et al. Negative interactions and feedback regulations are required for transient cellular response. Sci Rep. 2014;4(1):3718.
  • Mobashir M, Schraven B, Beyer T. Simulated evolution of signal transduction networks. PLoS One. 2012;7(12):e50905.
  • de la Monte SM, Tong M, Lester-Coll N, et al. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis. 2006;10(1):89–109.
  • Wang H, Brown J, Martin M. Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. Cytokine. 2011;53(2):130–140.
  • McCubrey JA, Steelman LS, Bertrand FE, et al. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget. 2014;5(10):2881–2911.
  • Shimura T. Acquired radioresistance of cancer and the AKT/GSK3β/cyclin D1 overexpression cycle. J Radiat Res. 2011;52(5):539–544.
  • Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990;9(8):2431–2438.
  • Lee SJ, Chung YH, Joo KM, et al. Age-related changes in glycogen synthase kinase 3β (GSK3β) immunoreactivity in the Central nervous system of rats. Neurosci Lett. 2006;409(2):134–139.
  • Leroy K, Yilmaz Z, Brion JP. Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropath App Neurobiol. 2007;33(1):43–55.
  • Llorens-Martín M, López-Doménech G, Soriano E, et al. GSK3β is involved in the relief of mitochondria pausing in a tau-dependent manner. PLoS One. 2011;6(11):e27686.
  • Fang X, Yu SX, Lu Y, et al. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA. 2000;97(22):11960–11965.
  • Ali A, Hoeflich KP, Woodgett JR. Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev. 2001;101(8):2527–2540.
  • Eldar-Finkelman H. Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med. 2002;8(3):126–132.
  • Sharfi H, Eldar-Finkelman H. Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun NH2-terminal kinase plays a role in hepatic insulin signaling. Am J Physiol Endocrinol Metab. 2008;294(2):E307–E315.
  • Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10(7):468–477.
  • Liu C, Li Y, Semenov M, et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837–847.
  • Bhat RV, Budd Haeberlein SL, Avila J, et al. Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem. 2004;89(6):1313–1317.
  • Hernández F, Pérez M, Lucas JJ, et al. Glycogen synthase kinase-3 plays a crucial role in tau exon 10 splicing and intranuclear distribution of SC35: implications for Alzheimer’s disease. J Biol Chem. 2004;279(5):3801–3806.
  • Fulga TA, Elson-Schwab I, Khurana V, et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol. 2007;9(2):139–148.
  • Cohen P, Goedert M. GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov. 2004;3(6):479–487.
  • Kozikowski AP, Gaisina IN, Petukhov PA, et al. Highly potent and specific GSK-3β inhibitors that block tau phosphorylation and decrease α-synuclein protein expression in a cellular model of Parkinson’s disease. Chem Med Chem: Chem Enabling Drug Discov. 2006;1(2):256–266.
  • Emamian ES, Hall D, Birnbaum MJ, et al. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet. 2004;36(2):131–137.
  • Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA. 1996;93(16):8455–8459.
  • Richard SJ, Johnson GVW. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 2004;29(2):95–102.
  • Cole AR, Knebel A, Morrice NA, et al. GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J Biol Chem. 2004;279(48):50176–50180.
  • Jiang H, Guo W, Liang X, et al. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators. Cell. 2005;120(1):123–135.
  • Yoshimura T, Kawano Y, Arimura N, et al. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell. 2005;120(1):137–149.
  • Lovestone S, Reynolds CH, Latimer D, et al. Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol. 1994;4(12):1077–1086.
  • Hanger DP, Hughes K, Woodgett JR, et al. Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett. 1992;147(1):58–62.
  • Goedert M, Jakes R, Crowther RA, et al. Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein. Biochem J. 1994;301(3):871–877.
  • Hasegawa M, Jakes R, Crowther RA, et al. Characterization of mAb AP422, a novel phosphorylation-dependent monoclonal antibody against tau protein. FEBS Lett. 1996;384(1):25–30.
  • Hong M, Chen DC, Klein PS, et al. Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem. 1997;272(40):25326–25332.
  • Palacino JJ, Murphy MP, Murayama O, et al. Presenilin 1 regulates β-catenin-mediated transcription in a glycogen synthase kinase-3-independent fashion. J Biol Chem. 2001;276(42):38563–38569.
  • Phiel CJ, Wilson CA, Lee VM, et al. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature. 2003;423(6938):435–439.
  • Alvarez G, Muñoz-Montaño JR, Satrústegui J, et al. Lithium protects cultured neurons against β-amyloid-induced neurodegeneration. FEBS Lett. 1999;453(3):260–264.
  • Morales-Garcia JA, Luna-Medina R, Alonso-Gil S, et al. Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem Neurosci. 2012;3(11):963–971.
  • Dunning CJ, McGauran G, Willén K, et al. Direct high affinity interaction between Aβ42 and GSK3α stimulates hyperphosphorylation of tau. A new molecular link in Alzheimer’s disease? ACS Chem Neurosci. 2016;7(2):161–170.
  • Koike H, Tomioka S, Sorimachi H, et al. Membrane-anchored metalloprotease MDC9 has an alpha-secretase activity responsible for processing the amyloid precursor protein. Biochem J. 1999;343(2):371–375.
  • Cai Z, Zhao Y, Zhao B. Roles of glycogen synthase kinase 3 in Alzheimer’s disease. Curr Alzheimer Res. 2012;9(7):864–879.
  • Uemura K, Kuzuya A, Shimozono Y, et al. GSK3β activity modifies the localization and function of presenilin 1. J Biol Chem. 2007;282(21):15823–15832.
  • Ly PT, Wu Y, Zou H, et al. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest. 2013;123(1):224–235.
  • Chen CH, Zhou W, Liu S, et al. Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol. 2012;15(1):77–90.
  • Luo Y, Bolon B, Kahn S, et al. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci. 2001;4(3):231–232.
  • Sun X, Sato S, Murayama O, et al. Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein. C100. Neurosci Lett. 2002;321(1–2):61–64.
  • Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA. 2003;100(7):4162–4167.
  • Magdesian MH, Carvalho MM, Mendes FA, et al. Amyloid-β binds to the extracellular cysteine-rich domain of frizzled and inhibits Wnt/β-catenin signaling. J Biol Chem. 2008;283(14):9359–9368.
  • Hernández F, de Barreda EG, Fuster-Matanzo A, et al. GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol. 2010;223(2):322–325.
  • Andreadis A. Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta. 2005;1739(2–3):91–103.
  • Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58(4):458–471.
  • Asuni AA, Hooper C, Reynolds CH, et al. GSK3α exhibits β-catenin and tau directed kinase activities that are modulated by Wnt. Eur J Neurosci. 2006;24(12):3387–3392.
  • Lucas JJ, Hernández F, Gómez-Ramos P, et al. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO J. 2001;20(1–2):27–39.
  • Engel T, Goñi-Oliver P, Lucas JJ, et al. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem. 2006;99(6):1445–1455.
  • Mudher A, Shepherd D, Newman TA, et al. GSK-3 β inhibition reverses axonal transport defects and behavioural phenotypes in drosophila. Mol Psychiatry. 2004;9(5):522–530.
  • Lesort M, Jope RS, Johnson GV. Insulin transiently increases tau phosphorylation: Involvement of glycogen synthase kinase-3β and fyn tyrosine kinase. J Neurochem. 1999;72(2):576–584.
  • Caricasole A, Copani A, Caraci F, et al. Induction of dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci. 2004;24(26):6021–6027.
  • Takashima A, Murayama M, Murayama O, et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc Natl Acad Sci USA. 1998;95(16):9637–9641.
  • Baki L, Shioi J, Wen P, et al. PS1 activates PI3K thus inhibiting GSK-3 activity and tau over phosphorylation: effects of FAD mutations. EMBO J. 2004;23(13):2586–2596.
  • Giese KP. GSK-3: a key player in neurodegeneration and memory. IUBMB Life. 2009;61(5):516–521.
  • Peineau S, Taghibiglou C, Bradley C, et al. LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron. 2007;53(5):703–717.
  • Hooper C, Markevich V, Plattner F, et al. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci. 2007;25(1):81–86.
  • Hui J, Zhang J, Pu M, et al. Modulation of GSK-3β/β-catenin signaling contributes to learning and memory impairment in a rat model of depression. Int J Neuropsychopharmacol. 2018;21(9):858–870.
  • Maguschak KA, Ressler KJ. β-catenin is required for memory consolidation. Nat Neurosci. 2008;11(11):1319–1326.
  • Vallée A, Lecarpentier Y. Alzheimer disease: crosstalk between the canonical Wnt/beta-catenin pathway and PPARs alpha and gamma. Front Neurosci. 2016;10:459.
  • Llorens-Martín M, Jurado J, Hernández F, et al. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci. 2014;7(46):46.
  • Onishi T, Iwashita H, Uno Y, et al. A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S)-methylsulfinyl] phenyl}-1-benzofuran-5-yl)-1, 3, 4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease. J Neurochem. 2011;119(6):1330–1340.
  • Avrahami L, Farfara D, Shaham-Kol M, et al. Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem. 2013;288(2):1295–1306.
  • Sirerol-Piquer M, GomezRamos P, Hernández F, et al. GSK3β overexpression induces neuronal death and a depletion of the neurogenic niches in the dentate gyrus. Hippocampus. 2011;21(8):910–922.
  • Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132(4):645–660.
  • Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25(4):554–560.
  • Goodenough S, Schleusner D, Pietrzik C, et al. Glycogen synthase kinase 3β links neuroprotection by 17β-estradiol to key Alzheimer processes. Neurosci. 2005;132(3):581–589.
  • Preece P, Virley DJ, Costandi M, et al. β-Secretase (BACE) and GSK-3 mRNA levels in Alzheimer’s disease. Mol Brain Res. 2003;116(1–2):155–158.
  • Michelucci A, Heurtaux T, Grandbarbe L, et al. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-β. J Neuroimmunol. 2009;210(1–2):3–12.
  • Heneka MT, O'Banion MK, Terwel D, et al. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm (Vienna). 2010;117(8):919–947.
  • Koistinaho J, Malm T, Goldsteins G. Glycogen synthase kinase-3β: a mediator of inflammation in Alzheimer’s disease? Int J Alzheimers Dis. 2011;2011:129753.
  • Beurel E, Jope RS. Differential regulation of STAT family members by glycogen synthase kinase-3. J Biol Chem. 2008;283(32):21934–21944.
  • Yuskaitis CJ, Jope RS. Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell Signal. 2009;21(2):264–273.
  • Plotkin B, Kaidanovich O, Talior I, et al. Insulin mimetic action of synthetic phosphorylated peptide inhibitors of glycogen synthase kinase-3. J Pharmacol Exp Ther. 2003;305(3):974–980.
  • Samadi A, Valderas C, de los Ríos C, et al. Cholinergic and neuroprotective drugs for the treatment of Alzheimer and neuronal vascular diseases. II. Synthesis, biological assessment, and molecular modelling of new tacrine analogues from highly substituted 2-aminopyridine-3-carbonitriles. Bioorg Med Chem. 2011;19(1):122–133.
  • Wang H, Wang R, Zhao Z, et al. Coexistences of insulin signaling-related proteins and choline acetyltransferase in neurons. Brain Res. 2009;1249:237–243.
  • Kokubo H, Kayed R, Glabe CG, et al. Soluble Aβ oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer’s disease brain. Brain Res. 2005;1031(2):222–228.
  • Robert M, Mathuranath PS. Tau and tauopathies. Neurol India. 2007;55(1):11–16.
  • Zumbrunn J, Kinoshita K, Hyman AA, et al. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr Biol. 2001;11(1):44–49.
  • Sergeant N, Bretteville A, Hamdane M, et al. Biochemistry of tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics. 2008;5(2):207–224.
  • Rauk A. Why is the amyloid beta peptide of Alzheimer’s disease neurotoxic? Dalton Trans. 2008;(10):1273–1282.
  • Pope W, Enam SA, Bawa N, et al. Phosphorylated tau epitope of Alzheimer’s disease is coupled to axon development in the avian Central nervous system. Exp Neurol. 1993;120(1):106–113.
  • Bartzokis G, Cummings JL, Sultzer D, et al. White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study. Arch Neurol. 2003;60(3):393–398.
  • Montenegro-Venegas C, Tortosa E, Rosso S, et al. MAP1B regulates axonal development by modulating Rho-GTPase Rac1 activity. Mol Biol Cell. 2010;21(20):3518–3528.
  • Soutar MP, Kim WY, Williamson R, et al. Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain. J Neurochem. 2010;115(4):974–983.
  • Ryan KA, Pimplikar SW. Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J Cell Biol. 2005;171(2):327–335.
  • Pigino G, Morfini G, Pelsman A, et al. Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci. 2003;23(11):4499–4508.
  • Beurel E, Jope RS. The paradoxical pro-and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006;79(4):173–189.
  • Johnson-Farley NN, Travkina T, Cowen DS. Cumulative activation of akt and consequent inhibition of glycogen synthase kinase-3 by brain-derived neurotrophic factor and insulin-like growth factor-1 in cultured hippocampal neurons. J Pharmacol Exp Ther. 2006;316(3):1062–1069.
  • Watcharasit P, Bijur GN, Song L, et al. Glycogen synthase kinase-3β (GSK3β) binds to and promotes the actions of p53. J Biol Chem. 2003;278(49):48872–48879.
  • Loberg RD, Vesely E, Brosius FC. Enhanced glycogen synthase kinase-3β activity mediates hypoxia-induced apoptosis of vascular smooth muscle cells and is prevented by glucose transport and metabolism. J Biol Chem. 2002;277(44):41667–41673.
  • Bijur GN, De Sarno P, Jope RS. Glycogen synthase kinase-3β facilitates staurosporine-and heat shock-induced apoptosis: protection by lithium. J Biol Chem. 2000;275(11):7583–7590.
  • Pap M, Cooper GM. Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β signaling pathway. Mol Cell Biol. 2002;22(2):578–586.
  • Fuster-Matanzo A, Llorens-Martín M, de Barreda EG, et al. Different susceptibility to neurodegeneration of dorsal and ventral hippocampal dentate gyrus: a study with transgenic mice overexpressing GSK3β. PLoS One. 2011;6(11):e27262.
  • Llorens-Martin M, Fuster-Matanzo A, Teixeira CM, et al. GSK-3β overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo. Mol Psychiatry. 2013;18(4):451–460.
  • Gomez-Sintes R, Hernandez F, Bortolozzi A, et al. Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO J. 2007;26(11):2743–2754.
  • Babu AP, Chitti S, Rajesh B, et al. In silico based ligand design and docking studies of GSK-3β inhibitors. CBIJ. 2010;10:1–12.
  • De Ferrari GV, Chacon MA, Barria MI, et al. Activation of Wnt signaling rescues neurodegeneration and behavioural impairments induced by β-amyloid fibrils. Mol Psychiatry. 2003;8(2):195–208.
  • Macdonald A, Briggs K, Poppe M, et al. A feasibility and tolerability study of lithium in Alzheimer’s disease. Int J Geriatr Psychiatry. 2008;23(7):704–711.
  • Mora A, Sabio G, González-Polo RA, et al. Lithium inhibits caspase 3 activation and dephosphorylation of PKB and GSK3 induced by K + deprivation in cerebellar granule cells. J Neurochem. 2001;78(1):199–206.
  • Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun. 2001;280(3):720–725.
  • Kypta RM. GSK-3 inhibitors and their potential in the treatment of Alzheimer’s disease. Expert Opin on Ther Pat. 2005;15(10):1315–1331.
  • Forlenza OV, De-Paula VD, Diniz BS. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem Neurosci. 2014;5(6):443–450.
  • Ghribi O, Herman MM, Savory J. Lithium inhibits Aβ-induced stress in endoplasmic reticulum of rabbit hippocampus but does not prevent oxidative damage and tau phosphorylation. J Neurosci Res. 2003;71(6):853–862.
  • Dunn N, Holmes C, Mullee M. Does lithium therapy protect against the onset of dementia? Alzheimer Dis Assoc Disord. 2005;19(1):20–22.
  • Hampel H, Ewers M, Burger K, et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry. 2009;70(6):922–931.
  • Tariot PN, Aisen PS. Can lithium or valproate untie tangles in Alzheimer’s disease? J Clin Psychiatry. 2009;70(6):919–921.
  • Ryves WJ, Dajani R, Pearl L, et al. Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem Biophys Res Commun. 2002;290(3):967–972.
  • Kroczka B, Branski P, Palucha A, et al. Antidepressant-like properties of zinc in rodent forced swim test. Brain Res Bull. 2001;55(2):297–300.
  • Bodnar LM, Wisner KL. Nutrition and depression: implications for improving mental health among childbearing-aged women. Biol Psychiatry. 2005;58(9):679–685.
  • Nowak G, Szewczyk B, Pilc A. Zinc and depression. An update. Pharmacol Rep. 2005;57(6):713–718.
  • Gómez-Ramos A, Domínguez J, Zafra D, et al. Sodium tungstate decreases the phosphorylation of tau through GSK3 inactivation. J Neurosci Res. 2006;83(2):264–273.
  • Witherington J. Glycogen synthase kinase 3 (GSK-3) and its inhibitors; drug discovery and development. In: Martinez A, Castro A, Medina M, Wang B, editors. Hoboken, New Jersey: Wiley; 2006, Vol. 15. p. 281–306.
  • Martinez A, Castro A, Dorronsoro I, et al. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med Res Rev. 2002;22(4):373–384.
  • Patel DS, Dessalew N, Iqbal P, et al. Structure-based approaches in the design of GSK-3 selective inhibitors. Curr Protein Peptide Sci. 2007;8(4):352–364.
  • Zaharevitz DW, Gussio R, Leost M, et al. Discovery and initial characterization of the paullones, a novel class of small-molecule inhibitors of cyclin-dependent kinases. Cancer Res. 1999;59(11):2566–2569.
  • Meijer L, Skaltsounis AL, Magiatis P, et al. GSK-3-selective inhibitors derived from tyrian purple indirubins. Chem Biol. 2003;10(12):1255–1266.
  • Witherington J, Bordas V, Gaiba A, et al. 6-Heteroaryl-pyrazolo [3, 4-b] pyridines: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg Med Chem Lett. 2003;13(18):3059–3062.
  • Zhang HC, Ye H, Conway BR, et al. 3-(7-Azaindolyl)-4-arylmaleimides as potent, selective inhibitors of glycogen synthase kinase-3. Bioorg Med Chem Lett. 2004;14(12):3245–3250.
  • Smith DG, Buffet M, Fenwick AE, et al. 3-Anilino-4-arylmaleimides: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg Med Chem Lett. 2001;11(5):635–639.
  • Cline GW, Johnson K, Regittnig W, et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in zucker diabetic fatty (fa/fa) rats. Diabetes. 2002;51(10):2903–2910.
  • Lo Monte F, Kramer T, Gu J, et al. Identification of glycogen synthase kinase-3 inhibitors with a selective sting for glycogen synthase kinase-3α. J Med Chem. 2012;55(9):4407–4424.
  • Zou H, Zhou L, Li Y, et al. Benzo [e] isoindole-1, 3-diones as potential inhibitors of glycogen synthase kinase-3 (GSK-3). synthesis, kinase inhibitory activity, zebrafish phenotype, and modeling of binding mode. J Med Chem. 2010;53(3):994–1003.
  • Khanfar MA, Hill RA, Kaddoumi A, et al. Discovery of novel GSK-3β inhibitors with potent in vitro and in vivo activities and excellent brain permeability using combined ligand-and structure-based virtual screening. J Med Chem. 2010;53(24):8534–8545.
  • Rochais C, Duc NV, Lescot E, et al. Synthesis of new dipyrrolo-and furopyrrolopyrazinones related to tripentones and their biological evaluation as potential kinases (CDKs1–5, GSK-3) inhibitors. Eur J Med Chem. 2009;44(2):708–716.
  • Sivaprakasam P, Han X, Civiello RL, et al. Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core. Bioorg Med Chem Lett. 2015;25(9):1856–1863.
  • Sun A, Shanmugam I, Song J, et al. Lithium suppresses cell proliferation by interrupting E2F–DNA interaction and subsequently reducing S–phase gene expression in prostate cancer. Prostate. 2007;67(9):976–988.
  • Graff JR, McNulty AM, Hanna KR, et al. The protein kinase Cβ–selective inhibitor, enzastaurin (LY317615. HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human Colon cancer and glioblastoma xenografts. Cancer Res. 2005;65(16):7462–7469.
  • Gaisina IN, Gallier F, Ougolkov AV, et al. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl) maleimides as glycogen synthase kinase 3β inhibitors that suppress proliferation and survival of pancreatic cancer cells. J Med Chem. 2009;52(7):1853–1863.
  • Choi SJ, Lee JE, Jeong SY, et al. 5′-Substituted indirubin-3′-oxime derivatives as potent cyclin-dependent kinase inhibitors with anticancer activity. J Med Chem. 2010;53(9):3696–3706.
  • Palomo V, Perez DI, Perez C, et al. 5-imino-1, 2, 4-thiadiazoles: first small molecules as substrate competitive inhibitors of glycogen synthase kinase 3. J Med Chem. 2012;55(4):1645–1661.
  • Collino M, Aragno M, Castiglia S, et al. Insulin reduces cerebral ischemia/reperfusion injury in the hippocampus of diabetic rats: a role for glycogen synthase kinase-3β. Diabetes. 2009;58(1):235–242.
  • Martinez A, Gil C, Perez DI. Glycogen synthase kinase 3 inhibitors in the next horizon for Alzheimer’s disease treatment. Int J Alzheimer’s Dis. 2011;2011:1–7.
  • Boulahjar R, Ouach A, Bourg S, et al. Advances in tetrahydropyrido [1, 2-a] isoindolone (valmerins) series: potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors. Eur J Med Chem. 2015;101:274–287.
  • Bajaj S, Asati V, Singh J, et al. 1, 3, 4-Oxadiazoles: an emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur J Med Chem. 2015;97:124–141.
  • Bax B, Carter PS, Lewis C, et al. The structure of phosphorylated GSK-3β complexed with a peptide, FRATtide, that inhibits β-catenin phosphorylation. Structure. 2001;9(12):1143–1152.
  • Palomo V, Soteras I, Perez DI, et al. Exploring the binding sites of glycogen synthase kinase 3. Identification and characterization of allosteric modulation cavities. J Med Chem. 2011;54(24):8461–8470.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.