65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced levels of fractalkine and HSP60 in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis patients

, , , , , , , , & show all
Received 07 Apr 2023, Accepted 07 Apr 2024, Published online: 29 Apr 2024

References

  • Harry GJ, Kraft AD. Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology. 2012;33(2):191–206. doi: 10.1016/j.neuro.2012.01.012.
  • Mishra PS, Vijayalakshmi K, Nalini A, et al. Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J Neuroinflammation. 2017;14(1):251. doi: 10.1186/s12974-017-1028-x.
  • Qin J, Ma Z, Chen X, et al. Microglia activation in central nervous system disorders: a review of recent mechanistic investigations and development efforts. Front Neurol. 2023;14:1103416. doi: 10.3389/fneur.2023.1103416.
  • Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation. 2004;1(1):14. doi: 10.1186/1742-2094-1-14.
  • Arnoux I, Audinat E. Fractalkine signaling and microglia functions in the developing brain. Neural Plast. 2015;2015:689404–689408. doi: 10.1155/2015/689404.
  • Chen P, Zhao W, Guo Y, et al. CX3CL1/CX3CR1 in alzheimer’s disease: a target for neuroprotection. Biomed Res Int. 2016;2016:8090918. doi: 10.1155/2016/8090918.
  • Sokolowski JD, Chabanon-Hicks CN, Han CZ, et al. Fractalkine is a “find-me” signal released by neurons undergoing ethanol-induced apoptosis. Front Cell Neurosci. 2014;8:360. doi: 10.3389/fncel.2014.00360.
  • Suzuki M, El-Hage N, Zou S, et al. Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 tat-induced dendritic losses and death. Mol Neurodegener. 2011;6(1):78. doi: 10.1186/1750-1326-6-78.
  • Ślusarczyk J, Trojan E, Głombik K, et al. Fractalkine attenuates microglial cell activation induced by prenatal stress. Neural Plast. 2016;2016:7258201–7258211. doi: 10.1155/2016/7258201.
  • Bazan JF, Bacon KB, Hardiman G, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature. 1997;385(6617):640–644. doi: 10.1038/385640a0.
  • Jeyalan V, Austin D, Loh SX, et al. Fractalkine/CX3CR1 in dilated cardiomyopathy: a potential future target for immunomodulatory therapy? Cells. 2023;12(19):2377. doi: 10.3390/cells12192377.
  • Sullivan JC, Pardieck JL, Doran D, et al. Greater fractalkine expression in mesenteric arteries of female spontaneously hypertensive rats compared with males. Am J Physiol Heart Circ Physiol. 2009;296(4):H1080–8. doi: 10.1152/ajpheart.01093.2008.
  • Paolicelli RC, Bisht K, Tremblay MÈ. Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front Cell Neurosci. 2014;8:129. doi: 10.3389/fncel.2014.00129.
  • Chen X, He X, Xu F, et al. Fractalkine enhances hematoma resolution and improves neurological function via CX3CR1/AMPK/PPARγ pathway after GMH. Stroke. 2023;54(9):2420–2433. doi: 10.1161/STROKEAHA.123.043005.
  • Inoue K, Morimoto H, Ohgidani M, et al. Modulation of inflammatory responses by fractalkine signaling in microglia. PLoS One. 2021;16(5):e0252118. 21 doi: 10.1371/journal.pone.0252118.
  • Brites D, Vaz AR. Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci. 2014; 8:117. doi: 10.3389/fncel.2014.00117.
  • Shobha K, Alladi PA, Nalini A, et al. Exposure to CSF from sporadic amyotrophic lateral sclerosis patients induces morphological transformation of astroglia and enhances GFAP and S100β expression. Neurosci Lett. 2010;473(1):56–61. doi: 10.1016/j.neulet.2010.02.022.
  • Valori CF, Brambilla L, Martorana F, et al. The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cell Mol Life Sci. 2014;71(2):287–297. doi: 10.1007/s00018-013-1429-7.
  • Gorter RP, Stephenson J, Nutma E, et al. Rapidly progressive amyotrophic lateral sclerosis is associated with microglial reactivity and small heat shock protein expression in reactive astrocytes. Neuropathol Appl Neurobiol. 2019;45(5):459–475. doi: 10.1111/nan.12525.
  • Grundtman C, Kreutmayer SB, Almanzar G, et al. Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31(5):960–968. May doi: 10.1161/ATVBAHA.110.217877.
  • Ding F, Li F, Li Y, et al. HSP60 mediates the neuroprotective effects of curcumin by suppressing microglial activation. Exp Ther Med. 2016;12(2):823–828. doi: 10.3892/etm.2016.3413.
  • Lehnardt S, Schott E, Trimbuch T, et al. A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci. 2008;28(10):2320–2331. doi: 10.1523/JNEUROSCI.4760-07.2008.
  • Bi F, Wang J, Zheng X, et al. HSP60 participates in the anti-glioma effects of curcumin. Exp Ther Med. 2021;21(3):204. doi: 10.3892/etm.2021.9637.
  • Liyanagamage DS, Martinus RD. Role of mitochondrial stress protein HSP60 in diabetes-induced neuroinflammation. Mediators Inflamm. 2020;2020:8073516–8073518. doi: 10.1155/2020/8073516.
  • Zhang D, Sun L, Zhu H, et al. Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity. Neurochem Int. 2012;61(7):1021–1035. doi: 10.1016/j.neuint.2012.07.019.
  • Swaroop S, Mahadevan A, Shankar SK, et al. HSP60 critically regulates endogenous IL-1β production in activated microglia by stimulating NLRP3 inflammasome pathway. J Neuroinflammation. 2018;15(1):177. doi: 10.1186/s12974-018-1214-5.
  • Anneser JM, Chahli C, Borasio GD. Protective effect of metabotropic glutamate receptor inhibition on amyotrophic lateral sclerosis–cerebrospinal fluid toxicity in vitro. Neuroscience. 2006;141(4):1879–1886. doi: 10.1016/j.neuroscience.2006.05.044.
  • Mishra PS, Dhull DK, Nalini A, et al. Astroglia acquires a toxic neuroinflammatory role in response to the cerebrospinal fluid from amyotrophic lateral sclerosis patients. J Neuroinflammation. 2016;13(1):212. doi: 10.1186/s12974-016-0698-0.
  • Shahani N, Gourie-Devi M, Nalini A, et al. (-)-deprenyl alleviates the degenerative changes induced in the neonatal rat spinal cord by CSF from amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5(3):172–179. doi: 10.1080/14660820410017037.
  • Shobha K, Vijayalakshmi K, Alladi PA, et al. Altered in-vitro and in-vivo expression of glial glutamate transporter-1 following exposure to cerebrospinal fluid of amyotrophic lateral sclerosis patients. J Neurol Sci. 2007;254(1-2):9–16. doi: 10.1016/j.jns.2006.12.004.
  • Varghese AM, Ghosh M, Bhagat SK, et al. Chitotriosidase, a biomarker of amyotrophic lateral sclerosis, accentuates neurodegeneration in spinal motor neurons through neuroinflammation. J Neuroinflammation. 2020;17(1):232. doi: 10.1186/s12974-020-01909-y.
  • Steinacker P, Verde F, Fang L, et al. Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. J Neurol Neurosurg Psychiatry. 2018;89(3):239–247. doi: 10.1136/jnnp-2017-317138.
  • Costa J, Gromicho M, Pronto-Laborinho A, et al. Cerebrospinal fluid chitinases as biomarkers for amyotrophic lateral sclerosis. Diagnostics. 2021;11(7):1210. doi: 10.3390/diagnostics11071210.
  • Bäckryd E, Lind AL, Thulin M, et al. High levels of cerebrospinal fluid chemokines point to the presence of neuroinflammation in peripheral neuropathic pain: a cross-sectional study of 2 cohorts of patients compared with healthy controls. Pain. 2017;158(12):2487–2495. doi: 10.1097/j.pain.0000000000001061.
  • Hatcher-Martin JM, McKay JL, Sommerfeld B, et al. Cerebrospinal fluid Aβ42 and fractalkine are associated with Parkinson’s disease with freezing of gait. medRxiv. 2020.
  • Perea JR, Lleó A, Alcolea D, et al. Decreased CX3CL1 levels in the cerebrospinal fluid of patients with alzheimer’s disease. Front Neurosci. 2018;12:609. doi: 10.3389/fnins.2018.00609.
  • Campanella C, Pace A, Caruso Bavisotto C, et al. Heat shock proteins in alzheimer’s disease: role and targeting. Int J Mol Sci. 2018;19(9):2603. doi: 10.3390/ijms19092603.
  • Noelker C, Morel L, Osterloh A, et al. Heat shock protein 60: an endogenous inducer of dopaminergic cell death in parkinson disease. J Neuroinflammation. 2014;11(1):86. doi: 10.1186/1742-2094-11-86.
  • Brooks BR, Miller RG, Swash M, et al. El escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1(5):293–299. doi: 10.1080/146608200300079536.
  • Rancan M, Bye N, Otto VI, et al. The chemokine fractalkine in patients with severe traumatic brain injury and a mouse model of closed head injury. J Cereb Blood Flow Metab. 2004;24(10):1110–1118. doi: 10.1097/01.WCB.0000133470.91843.72.
  • Varghese AM, Sharma A, Mishra P, et al. Chitotriosidase-a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin Proteomics. 2013;10(1):19. doi: 10.1186/1559-0275-10-19.
  • Lopez-Lopez A, Gamez J, Syriani E, et al. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One. 2014;9(5):e96528. doi: 10.1371/journal.pone.0096528.
  • Liu C, Hong K, Chen H, et al. Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis. Biol Chem. 2019;400(5):651–661. doi: 10.1515/hsz-2018-0204.
  • Finneran DJ, Morgan D, Gordon MN, et al. CNS-wide over expression of fractalkine improves cognitive functioning in a tauopathy model. J Neuroimmune Pharmacol. 2019;14(2):312–325. doi: 10.1007/s11481-018-9822-5.
  • Sosvorova L, Vcelak J, Mohapl M, et al. Selected pro-and anti-inflammatory cytokines in cerebrospinal fluid in normal pressure hydrocephalus. Neuroendocrinology Letters. 2014;35(7):586–593.
  • Moreau C, Devos D, Brunaud-Danel V, et al. Elevated IL-6 and TNF-α levels in patients with ALS: inflammation or hypoxia? Neurology. 2005;65(12):1958–1960. doi: 10.1212/01.wnl.0000188907.97339.76.
  • Noda M, Doi Y, Liang J, et al. Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J Biol Chem. 2011;286(3):2308–2319. doi: 10.1074/jbc.M110.169839.
  • Chapman GA, Moores K, Harrison D, et al. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci. 2000;20(15):RC87–RC87. doi: 10.1523/JNEUROSCI.20-15-j0004.2000.
  • Fiszman ML, Ricart KC, Latini A, et al. In vitro neurotoxic properties and excitatory aminoacids concentration in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Relationship with the degree of certainty of disease diagnoses. Acta Neurol Scand. 2010;121(2):120–126. doi: 10.1111/j.1600-0404.2009.01200.x.
  • Ng Kee Kwong KC, Mehta AR, Nedergaard M, et al. Defining novel functions for cerebrospinal fluid in ALS pathophysiology. Acta Neuropathol Commun. 2020;8(1):140–158. doi: 10.1186/s40478-020-01018-0.
  • Sheridan GK, Murphy KJ. Neuron–glia crosstalk in health and disease: fractalkine and CX3CR1 take Centre stage. Open Biol. 2013;3(12):130181. doi: 10.1098/rsob.130181.
  • Lauro C, Chece G, Monaco L, et al. Fractalkine modulates microglia metabolism in brain ischemia. Front Cell Neurosci. 2019;13:414. doi: 10.3389/fncel.2019.00414.
  • Harrison JK, Jiang Y, Chen S, et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A. 1998;95(18):10896–10901. doi: 10.1073/pnas.95.18.10896.
  • Steinacker P, Feneberg E, Halbgebauer S, et al. Chitotriosidase as biomarker for early stage amyotrophic lateral sclerosis: a multicenter study. Amyotroph Lateral Scler Frontotemporal Degener. 2021;22(3-4):276–286. doi: 10.1080/21678421.2020.1861023.
  • Cappello F, Mazzola M, Jurjus A, et al. Hsp60 as a novel target in IBD management: a prospect. Front Pharmacol. 2019;10:26. doi: 10.3389/fphar.2019.00026.
  • Mantej J, Polasik K, Piotrowska E, et al. Autoantibodies to heat shock proteins 60, 70, and 90 in patients with rheumatoid arthritis. Cell Stress Chaperones. 2019;24(1):283–287. doi: 10.1007/s12192-018-0951-9.
  • Chandra D, Choy G, Tang DG. Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem. 2007;282(43):31289–31301. doi: 10.1074/jbc.M702777200.
  • Caruso Bavisotto C, Alberti G, Vitale AM, et al. Hsp60 post-translational modifications: functional and pathological consequences. Front Mol Biosci. 2020;7:95. doi: 10.3389/fmolb.2020.00095.
  • Chang D, Sharma L, Cruz CS. Chitotriosidase: a marker and modulator of lung disease. Eur Respir Rev. 2020;29(156):190143. doi: 10.1183/16000617.0143-2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.