14
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Advanced perioperative assessment of neurological function in acute Stanford A aortic dissection

, , &
Received 27 Mar 2024, Accepted 17 Apr 2024, Published online: 10 May 2024

References

  • Kaufeld T, Beckmann E, Rudolph L, et al. Preoperative pericardial hematoma in patients with acute type A aortic dissection (AAAD): do we need an adjusted treatment? J Cardiothorac Surg. 2023;18(1):67. doi: 10.1186/s13019-023-02152-1.
  • Chen X, Bai M, Sun S, et al. Risk factors of mortality in AAAD patients who had severe postoperative hyperbilirubinemia and received CRRT. J Card Surg. 2021;36(4):1320–1327. doi: 10.1111/jocs.15392.
  • Feng YM, Wan D, Guo R. A case report of hemorrhagic cardiac tamponade with rapid blood clot formation: a serious complication of acute type A aortic dissection. Medicine (Baltimore). 2018;97(50):e13699. doi: 10.1097/MD.0000000000013699.
  • Tasoudis PT, Varvoglis DN, Vitkos E, et al. Unilateral versus bilateral anterograde cerebral perfusion in acute type A aortic dissection repair: a systematic review and meta-analysis. Perfusion. 2023;38(5):931–938. doi: 10.1177/02676591221095468.
  • Wang L, Zhong G, Lv X, et al. Clinical outcomes of mild versus moderate hypothermic circulatory arrest with antegrade cerebral perfusion in adult aortic arch surgery: a systematic review and meta-analysis. Perfusion. 2022;39(2):266–280. doi: 10.1177/02676591221144169.
  • Hashimoto A, et al. Monitoring for spine and spinal cord surgery. No Shinkei Geka. 2023;51(3):507–516.
  • Carlson AP, Mayer AR, Cole C, et al. Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia. Rev Neurosci. Published online April 8, 2024; doi: 10.1515/revneuro-2024-0028.
  • Junlu T, et al. Research progress on perioperative monitoring of cerebral autoregulation and neurovascular coupling for carotid artery stenting. J Apoplexy and Nervous Diseases. 2024;41(1):14–17.
  • Ekkert A, Šliachtenko A, Grigaitė J, et al. Ischemic stroke genetics: What is new and how to apply it in clinical practice? Genes (Basel). 2021;13(1) doi: 10.3390/genes13010048.
  • Ajoolabady A, Wang S, Kroemer G, et al. Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics. Pharmacol Ther. 2021;225:107848. doi: 10.1016/j.pharmthera.2021.107848.
  • Zhang K, Wang Z, Zhu K, et al. Neurofilament light chain protein is a predictive biomarker for stroke after surgical repair for acute type A aortic dissection. Front Cardiovasc Med. 2021;8:754801. doi: 10.3389/fcvm.2021.754801.
  • Feyissa AM, Tatum WO. Adult EEG. Handb Clin Neurol. 2019;160:103–124.
  • Stewart JA, Särkelä MOK, Salmi T, et al. Noninvasive neuromonitoring of hypothermic circulatory arrest in aortic surgery. Scand J Surg. 2020;109(4):320–327. doi: 10.1177/1457496919863942.
  • Tang F, Guo P, Lan X, et al. Effectiveness of MEP and SSEP monitoring in the diagnosis of neurological dysfunction immediately after craniotomy aneurysm clipping. J Craniofac Surg. 2024 Jan-Feb 01;35(1):e38–e44. doi: 10.1097/SCS.0000000000009825.
  • Tenorio ER, Ribeiro MS, Banga PV, et al. Prospective assessment of a protocol using neuromonitoring, early limb reperfusion, and selective temporary aneurysm sac perfusion to prevent spinal cord injury during fenestrated-branched endovascular aortic repair. Ann Surg. 2022;276(6):e1028–e1034. doi: 10.1097/SLA.0000000000004624.
  • Sultan I, Brown JA, Serna-Gallegos D, et al. Intraoperative neurophysiologic monitoring during aortic arch surgery. J Thorac Cardiovasc Surg. 2023;165(6):1971–1981.e2. doi: 10.1016/j.jtcvs.2021.07.025.
  • Ghincea CV, Anderson DA, Ikeno Y, et al. Utility of neuromonitoring in hypothermic circulatory arrest cases for early detection of stroke: listening through the noise. J Thorac Cardiovasc Surg. 2021;162(4):1035–1045.e5. doi: 10.1016/j.jtcvs.2020.01.090.
  • Koch G, Casula EP, Bonnì S, et al. Precuneus magnetic stimulation for alzheimer’s disease: a randomized, sham-controlled trial. Brain. 2022;145(11):3776–3786. doi: 10.1093/brain/awac285.
  • Langan-Evans C, Hearris MA, Gallagher C, et al. Nutritional modulation of sleep latency, duration, and efficiency: a randomized, repeated-measures, double-Blind deception study. Med Sci Sports Exerc. 2023;55(2):289–300. doi: 10.1249/MSS.0000000000003040.
  • Yu C, Chunmei L, Qin L, et al. Application of intraoperative neurophysiological monitoring (IONM) for preventing dysphagia after anterior cervical surgery: a prospective study. World Neurosurg. 2024;184:e390–e396. doi: 10.1016/j.wneu.2024.01.135.
  • Casamento-Moran A, Mooney RA, Chib VS, et al. Cerebellar excitability regulates physical fatigue perception. J Neurosci. 2023;43(17):3094–3106. doi: 10.1523/JNEUROSCI.1406-22.2023.
  • Zhang Y, Zhang Y, Jiang Z, et al. The effect of EEG and fNIRS in the digital assessment and digital therapy of alzheimer’s disease: a systematic review. Front Neurosci. 2023;17:1269359. doi: 10.3389/fnins.2023.1269359.
  • Rongying L. Effects of ultra early neurorehabilitation therapy on patients with acute cerebral infarction. Chinese Foreign Medical Res. 2022;20(23):169–172.
  • Jinyan L, Ziye F, Yuhui C, et al. Protective effect of pelvic autonomic nerve monitoring on urinary function in male patients undergoing laparoscope-assisted radical resection for Middle and low rectal cancer. Acad J Chin PLA Med Sch. 2024; Available from https://link.cnki.net/urlid/10.1117.R.20240202.1514.016.
  • Ying W, Shan Y, Xiu W. Personalized comfort care in the operating room combined with neuro-monitoring equipment. Medical Equip. 2024;37(2):138–141.
  • Nobuhito M. Intraoperative neurophysiological monitoring of the bulbocavernosus reflex during surgery for conus spinal lipoma: What are the warning criteria? Journal of Neurosurgery. 2019;23(5):639–647.
  • Liu Q, Wang Q, Liu H, et al. Warning criteria for intraoperative neurophysiologic monitoring. Curr Opin Anaesthesiol. 2017;30(5):557–562. doi: 10.1097/ACO.0000000000000505.
  • Bonow RH, Young CC, Bass DI, et al. Transcranial doppler ultrasonography in neurological surgery and neurocritical care. Neurosurg Focus. 2019;47(6):E2. doi: 10.3171/2019.9.FOCUS19611.
  • Smith T, Jafrancesco G, Surace G, et al. A functional assessment of the circle of Willis before aortic arch surgery using transcranial doppler. J Thorac Cardiovasc Surg. 2019;158(5):1298–1304. doi: 10.1016/j.jtcvs.2019.01.007.
  • Kaneko T, Funahashi K, Ushigome M, et al. Noninvasive assessment of bowel blood perfusion using intraoperative laser speckle flowgraphy. Langenbecks Arch Surg. 2020;405(6):817–826. doi: 10.1007/s00423-020-01933-9.
  • Hayashi H, Okamoto M, Kawanishi H, et al. Association between optic nerve head blood flow measured using laser speckle flowgraphy and radial arterial pressure during aortic arch surgery. J Cardiothorac Vasc Anesth. 2018;32(2):702–708. doi: 10.1053/j.jvca.2017.08.001.
  • Kanda H, Kunisawa T, Iida T, et al. Cerebral circulation during retrograde cerebral perfusion: evaluation using laser speckle flowgraphy. Ann Thorac Surg. 2019;107(6):1747–1752. doi: 10.1016/j.athoracsur.2018.11.067.
  • Ma Y, Zhao L, Wei J, et al. Comparing near-infrared spectroscopy-measured cerebral oxygen saturation and corresponding venous oxygen saturations in children with congenital heart disease: a systematic ­review and meta-analysis. Transl Pediatr. 2022;11(8):1374–1388. doi: 10.21037/tp-22-345.
  • Yu Y, et al. Prognostic factors for permanent neurological dysfunction after total aortic arch replacement with regional cerebral oxygen saturation monitoring. Brain Behav. 2019;9(7):e01309.
  • Serraino GF, Murphy GJ. Effects of cerebral near-infrared spectroscopy on the outcome of patients undergoing cardiac surgery: a systematic review of randomised ­trials. BMJ Open. 2017;7(9):e016613. doi: 10.1136/bmjopen-2017-016613.
  • Ouypornkochagorn T, Polydorides N, McCann H. Towards continuous EIT monitoring for hemorrhagic stroke patients. Front Physiol. 2023;14:1157371. doi: 10.3389/fphys.2023.1157371.
  • Li Y, Zhang D, Liu B, et al. Noninvasive cerebral imaging and monitoring using electrical impedance tomography during total aortic arch replacement. J Cardiothorac Vasc Anesth. 2018;32(6):2469–2476. doi: 10.1053/j.jvca.2018.05.002.
  • Banerjee P, Theus C, Bremerich J, et al. Computed ­tomography scan predicts abdominal interventions but not stroke after surgery for acute type A aortic dissection. Thorac Cardiovasc Surg. 2016;64(2):108–115. doi: 10.1055/s-0035-1548732.
  • Gomibuchi T, Seto T, Naito K, et al. Strategies to improve outcomes for acute type A aortic dissection with cerebral malperfusion. Eur J Cardiothorac Surg. 2021;59(3):666–673. doi: 10.1093/ejcts/ezaa376.
  • Zhao H, Wen D, Duan W, et al. Identification of CTA-Based predictive findings for temporary and ­permanent neurological dysfunction after repair in acute type A aortic dissection. Sci Rep. 2018;8(1):9740. doi: 10.1038/s41598-018-28152-z.
  • Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR imaging during glioma resection. Magn Reson Med Sci. 2022;21(1):148–167. doi: 10.2463/mrms.rev.2021-0116.
  • Meo SA, et al. Magnetic resonance imaging (MRI) and neurological manifestations in SARS-CoV-2 patients. Eur Rev Med Pharmacol Sci. 2021;25(2):1101–1108.
  • Farrer TJ, Bigler ED, Tsui-Caldwell YHW, et al. Scheltens ratings, clinical white matter hyperintensities and executive: functioning in the cache county memory study. Appl Neuropsychol Adult. 2023;:1–7. doi: 10.1080/23279095.2023.2287140.
  • Obusez EC, Svensson L, Bullen J, et al. Deep chronic microvascular white matter ischemic change as an independent predictor of acute brain infarction after thoracic aortic replacement. J Card Surg. 2018;33(9):552–560. doi: 10.1111/jocs.13786.
  • Badertscher P, Du Fay de Lavallaz J, Hammerer-Lercher A, et al. Clinical utility of D-dimer for rule-out or rule-in of venous thromboembolism in syncope. J Cardiovasc Transl Res. 2023;16(2):427–429. doi: 10.1007/s12265-022-10306-0.
  • Liu T, Zheng J, Zhang Y-C, et al. Association between D-dimer and early adverse events in patients with acute type A aortic dissection undergoing arch replacement and the frozen elephant trunk implantation: a retrospective cohort study. Front Physiol. 2019;10:1627. doi: 10.3389/fphys.2019.01627.
  • Sakamoto Y, Koga M, Ohara T, et al. Frequency and detection of Stanford type A aortic dissection in hyperacute stroke management. Cerebrovasc Dis. 2016;42(1-2):110–116. doi: 10.1159/000445528.
  • Lv X-C, Lin Y, Wu Q-S, et al. Plasma interleukin-6 is a potential predictive biomarker for postoperative delirium among acute type A aortic dissection patients treated with open surgical repair. J Cardiothorac Surg. 2021;16(1):146. doi: 10.1186/s13019-021-01529-4.
  • Yang S, Gu C, Mandeville ET, et al. Anesthesia and ­surgery impair blood-brain barrier and cognitive function in mice. Front Immunol. 2017;8:902. doi: 10.3389/fimmu.2017.00902.
  • Subramaniyan S, Terrando N. Neuroinflammation and perioperative neurocognitive disorders. Anesth Analg. 2019;128(4):781–788. doi: 10.1213/ANE.0000000000004053.
  • He Y, Cai Z, Chen Y. Role of S-100β in stroke. Int J Neurosci. 2018;128(12):1180–1187. doi: 10.1080/00207454.2018.1481065.
  • Michetti F, D’Ambrosi N, Toesca A, et al. The S100B story: from biomarker to active factor in neural injury. J Neurochem. 2019;148(2):168–187. doi: 10.1111/jnc.14574.
  • Wan Z, Li Y, Ye H, et al. Plasma S100β and neuron-specific enolase, but not neuroglobin, are associated with early cognitive dysfunction after total arch replacement surgery: a pilot study. Medicine (Baltimore). 2021;100(15):e25446. doi: 10.1097/MD.0000000000025446.
  • Bigot-Corbel E, Lanore A, Raulet C, p., et al. SARS-CoV-2 and neurological disorders: the revelance of biomarkers?. Ann Biol Clin (Paris). 2021;79(1):7–16. doi: 10.1684/abc.2021.1622.
  • Kimura F, Kadohama T, Kitahara H, et al. Serum neuron-specific enolase level as predictor of neurologic outcome after aortic surgery. Thorac Cardiovasc Surg. 2020;68(4):282–290. doi: 10.1055/s-0038-1677511.
  • Granatiero V, Sayles NM, Savino AM, et al. Modulation of the IGF1R-MTOR pathway attenuates motor neuron toxicity of human ALS SOD1(G93A) astrocytes. Autophagy. 2021;17(12):4029–4042. doi: 10.1080/15548627.2021.1899682.
  • Sarto J, Ruiz-García R, Guillén N, et al. Diagnostic performance and clinical applicability of blood-based biomarkers in a prospective memory clinic cohort. Neurology. 2023;100(8):e860–e873. doi: 10.1212/WNL.0000000000201597.
  • Pekny M, Wilhelmsson U, Stokowska A, et al. Neurofilament light chain (NfL) in blood-a biomarker predicting unfavourable outcome in the acute phase and improvement in the late phase after stroke. Cells. 2021;10(6):1537. doi: 10.3390/cells10061537.
  • Dong Y, Li Y, Liu K, et al. Anosmia, mild cognitive impairment, and biomarkers of brain aging in older adults. Alzheimers Dement. 2023;19(2):589–601. doi: 10.1002/alz.12777.
  • Wang X, Yang X, He W, et al. The association of serum neurofilament light chains with early symptoms related to parkinson’s disease: a cross-sectional study. J Affect Disord. 2023;343:144–152. doi: 10.1016/j.jad.2023.10.014.
  • Keri LH, et al. Systemic, local, and imaging biomarkers of brain injury: more needed, and better use of those already established? Front Neurol. 2015;6:26.
  • Abdullah MAi-Quah, et al. Role of intraoperative neuromonitoring to predict postoperative delirium in cardiovascular surgery. J Cardiothoracic Vascular Anesthesia. 2024;38(2):p526–533.
  • Falasa MP, Arnaoutakis GJ, Janelle GM, et al. Neuromonitoring and neuroprotection advances for aortic arch surgery. JTCVS Tech. 2021;7:11–19. doi: 10.1016/j.xjtc.2020.12.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.