32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Markers of brain injury in patients with aneurysmal subarachnoid hemorrhage

, , &
Received 26 Mar 2024, Accepted 20 Apr 2024, Published online: 16 May 2024

References

  • Furukawa H, Wada K, Tada Y, et al. Mast cell promotes the development of intracranial aneurysm rupture. Stroke. 2020;51(11):3332–3339. doi: 10.1161/STROKEAHA.120.030834.
  • Nussbaum ES, Mikoff N, Paranjape GS. Cognitive deficits among patients surviving aneurysmal subarachnoid hemorrhage. A contemporary systematic review. Br J Neurosurg. 2021;35(4):384–401. doi: 10.1080/02688697.2020.1859462.
  • Mamo SK, Wheeler KA. The combined burden of hearing loss and cognitive impairment in a group care setting for older adults. J Speech Lang Hear Res. 2021;64(2):328–336. doi: 10.1044/2020_JSLHR-20-00068.
  • Kusaka G, Ishikawa M, Nanda A, et al. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24(8):916–925. doi: 10.1097/01.WCB.0000125886.48838.7E.
  • Lara-Angulo M, Geraghty JR, Moustafa B, et al. Abstract TP535: degree of cognitive impairment based on subarachnoid Hemorrhage-Associated early brain injury. Stroke. 2019;50(Suppl_1):535–ATP535. doi: 10.1161/str.50.suppl_1.TP535.
  • Phoominaonin IS, Wongsuriyanan S. Factors influencing 1-year functional outcome after surgery in aneurysmal subarachnoid hemorrhage patients: a single-center series. Asian J Neurosurg. 2021;16(3):525–530. doi: 10.4103/ajns.AJNS_13_21.
  • Ghali MGZ, Srinivasan VM, Wagner K, et al. Cognitive sequelae of unruptured and ruptured intracranial aneurysms and their treatment: modalities for neuropsychological assessment. World Neurosurg. 2018;120(1):537–549. doi: 10.1016/j.wneu.2018.06.178.
  • Zhou D, Wei D, Xing W, et al. Effects of craniotomy clipping and interventional embolization on treatment efficacy, cognitive function and recovery of patients complicated with subarachnoid hemorrhage. American Journal of Translational Research. 2021;13(5):5117.
  • Zheng ZV, Lam PK, Poon WS, et al. The time course of cognitive deficits in experimental subarachnoid hemorrhage. Acta Neurochirurgica Supplement. 2020;127:121–125.
  • Rass V, Helbok R. Early brain injury after poor-grade subarachnoid hemorrhage. Curr Neurol Neurosci Rep. 2019;19(10):78. doi: 10.1007/s11910-019-0990-3.
  • Gris T, Laplante P, Thebault P, et al. Innate immunity activation in the early brain injury period following subarachnoid hemorrhage. J Neuroinflammation. 2019;16(1):253. doi: 10.1186/s12974-019-1629-7.
  • Wang KK, Yang Z, Zhu T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn. 2018;18(2):165–180. doi: 10.1080/14737159.2018.1428089.
  • Iverson GL, Reddi PJ, Posti JP, et al. Serum neurofilament light is elevated differentially in older adults with uncomplicated mild traumatic brain injuries. J Neurotrauma. 2019;36(16):2400–2406. doi: 10.1089/neu.2018.6341.
  • Koivikko P, Posti JP, Mohammadian M, et al. Potential of heart fatty-acid binding protein, neurofilament light, interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity assessment of traumatic brain injury. Emerg Med J. 2022;39(3):206–212. doi: 10.1136/emermed-2020-209471.
  • Quintana E, Coll C, Salavedra‐Pont J, et al. Cognitive impairment in early stages of multiple sclerosis is associated with high cerebrospinal fluid levels of chitinase 3‐like 1 and neurofilament light chain. Eur J Neurol. 2018;25(9):1189–1191. doi: 10.1111/ene.13687.
  • Matuszczak E, Tylicka M, Komarowska MD, et al. Ubiquitin carboxy‐terminal hydrolase L1–physiology and pathology. Cell Biochem Funct. 2020;38(5):533–540. doi: 10.1002/cbf.3527.
  • Zhang M, Chen MY, Wang SL, et al. Association of ubiquitin C-Terminal Hydrolase-L1 (uch-L1) serum levels with cognition and brain energy metabolism. Eur Rev Med Pharmacol Sci. 2022;26(10):3656–3663.
  • Pang L, Liu J, Li W, et al. Serum ubiquitin C‐terminal hydrolase L1 predicts cognitive impairment in patients with acute organophosphorus pesticide poisoning. J Clin Lab Anal. 2019;33(7):e22947. doi: 10.1002/jcla.22947.
  • Yue JK, Yuh EL, Korley FK, et al. Association between plasma GFAP concentrations and MRI abnormalities in patients with CT-negative traumatic brain injury in the TRACK-TBI cohort: a prospective multicentre study. Lancet Neurol. 2019;18(10):953–961. doi: 10.1016/S1474-4422(19)30282-0.
  • Luger S, Witsch J, Dietz A, et al. Glial fibrillary acidic protein serum levels distinguish between intracerebral hemorrhage and cerebral ischemia in the early phase of stroke. Clin Chem. 2016;23(5):96–98.
  • Marschner L, Schreurs A, Lechat B, et al. Single mild traumatic brain injury results in transiently impaired spatial long-term memory and altered search strategies. Behav Brain Res. 2019;365(1):222–230. doi: 10.1016/j.bbr.2018.02.040.
  • Mercier E, Tardif PA, Cameron PA, et al. Prognostic value of neuron-specific enolase (NSE) for prediction of post-concussion symptoms following a mild traumatic brain injury: a systematic review. Brain Inj. 2018;32(1):29–40. doi: 10.1080/02699052.2017.1385097.
  • Echeverría-Palacio CM, Agut T, Arnaez J, et al. Neuron-specific enolase in cerebrospinal fluid predicts brain injury after sudden unexpected postnatal collapse. Pediatr Neurol. 2019;101(1):71–77. doi: 10.1016/j.pediatrneurol.2019.02.020.
  • Kalaria RN. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016;131(5):659–685. doi: 10.1007/s00401-016-1571-z.
  • Molad J, Hallevi H, Korczyn AD, et al. Vascular and neurodegenerative markers for the prediction of post-stroke cognitive impairment: results from the Tabasco study. J Alzheimers Dis. 2019;70(3):889–898. doi: 10.3233/JAD-190339.
  • Nasreddine ZS, Phillips NA, Bédirian V, et al. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment [published correction appears in J am geriatr soc. J American Geriatrics Society. 2005;53(4):695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
  • Borchers F, Rumpel M, Laubrock J, et al. Cognitive reserve and the risk of postoperative neurocognitive disorders in older age. Front Aging Neurosci. 2023;15:1327388. doi: 10.3389/fnagi.2023.1327388.
  • Savarraj J, Parsha K, Hergenroeder G, et al. Early brain injury associated with systemic inflammation after subarachnoid hemorrhage. Neurocrit Care. 2018;28(2):203–211. doi: 10.1007/s12028-017-0471-y.
  • Eagles ME, Tso MK, Macdonald RL. Cognitive impairment, functional outcome, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2019;124(1):e558–e562. doi: 10.1016/j.wneu.2018.12.152.
  • Dodd WS, Laurent D, Dumont AS, et al. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: a review. J Am Heart Assoc. 2021;10(15):e021845. doi: 10.1161/JAHA.121.021845.
  • Hong DY, Kim SY, Kim JY, et al. Red blood cell distribution width is an independent predictor of mortality in patients with aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg. 2018;172(1):82–86. doi: 10.1016/j.clineuro.2018.06.044.
  • Zhang X, Liu Y, Zhang S, et al. Neutrophil-to-albumin ratio as a biomarker of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2021;147(1):e453–e458. doi: 10.1016/j.wneu.2020.12.084.
  • Liu F, Bao Y, Qiu B, et al. Identification of novel cerebrospinal fluid biomarkers for cognitive decline in aneurysmal subarachnoid hemorrhage: a proteomic approach. Front Cell Neurosci. 2022;16:861425. doi: 10.3389/fncel.2022.861425.
  • Tokshilykova AB, Sarkulova ZN, Kabdrakhmanova GB, et al. Neuron-specific markers and their correlation with neurological scales in patients with acute neuropathologies. J Mol Neurosci. 2020;70(8):1267–1273. doi: 10.1007/s12031-020-01536-5.
  • Park DW, Park SH, Hwang SK. Serial measurement of S100B and NSE in pediatric traumatic brain injury. Childs Nerv Syst. 2019;35(2):343–348. doi: 10.1007/s00381-018-3955-y.
  • Zhou Z, Zeng J, Yu S, et al. Neurofilament light chain and S100B serum levels are associated with disease severity and outcome in patients with aneurysmal subarachnoid hemorrhage. Front Neurol. 2022;13:956043. doi: 10.3389/fneur.2022.956043.
  • Palmieri M, Frati A, Santoro A, et al. Diffuse axonal injury: clinical prognostic factors, molecular experimental models and the impact of the trauma related oxidative stress. An extensive review concerning milestones and advances. Int J Mol Sci. 2021;22(19):10865. doi: 10.3390/ijms221910865.
  • Korley FK, Yue JK, Wilson DH, et al. Performance evaluation of a multiplex assay for simultaneous detection of four clinically relevant traumatic brain injury biomarkers. J Neurotrauma. 2019;36(1):182–187. doi: 10.1089/neu.2017.5623.
  • Thelin E, Nimer F, Frostell A, et al. A serum protein biomarker panel improves outcome prediction in human traumatic brain injury. J Neurotrauma. 2019;36(20):2850–2862. doi: 10.1089/neu.2019.6375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.