103
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Multiaxial stress effects on bonding strength in adhesively bonded joints

, ORCID Icon &
Received 28 Sep 2023, Accepted 30 Mar 2024, Published online: 09 Apr 2024

References

  • Adams, R. D., editor. Adhesive Bonding: Science, Technology and Applications, 2nd ed.; Woodhead Publishing: US, 2021.
  • Da Silva, L. F. M.; Öchsner, A.; Adams, R. D. Introduction to Adhesive Bonding Technology. In Handbook of Adhesion Technology; Da Silva, L., Ed.; Springer Science+Business Media LLC: US, 2018; pp 1–7. DOI: 10.1007/978-3-319-55411-2_1.
  • Armstrong, W.; Sperry, J. Adhesive Bonding of Steel Structures. Weld. J. 1957, 36, 97s–110s. n.d.
  • Pirondi, A.; Moroni, F. Science of Clinch–Adhesive Joints. In Hybrid Adhesive Joints; Pirondi, A. Öchsner, A., Eds.; Springer: US, 2011; pp 109–147. DOI: 10.1007/8611_2010_36.
  • Denkert, C.; Gerke, T.; Glienke, R.; Dörre, M.; Henkel, M. K.; Fricke, H.; Myslicki, S.; Kaufmann, M.; Voß, M.; Vallée, T. Experimental Investigations on Pre-Tensioned Hybrid Joints for Structural Steel Applications. J. Adhes. 2021, 99(2), 117–152. DOI: 10.1080/00218464.2021.2003786.
  • Vallée, T.; Fricke, H.; Myslicki, S.; Kaufmann, M.; Voß, M.; Denkert, C.; Glienke, R.; Dörre, M.; Henkel, M.-K.; Gerke, T. Modelling and Strength Prediction of Pre-Tensioned Hybrid Bonded Joints for Structural Steel Applications. J. Adhes. 2021, 98(11), 1573–1613. DOI: 10.1080/00218464.2021.1928498.
  • Boretzki, J.; Albiez, M. Static Strength and Load Bearing Behaviour of Hybrid Bonded Bolted Joints: Experimental and Numerical Investigations. J. Adhes. 2022, 99(4), 606–631. DOI: 10.1080/00218464.2022.2033619.
  • Fricke, H.; Vallee, T. Numerical Modeling of Hybrid-Bonded Joints. J. Adhes. 2016, 92(7–9), 652–664. DOI: 10.1080/00218464.2015.1100995.
  • Abeln, B.; Pinger, T.; Richter, C.; Feldmann, M. Adhesion of Batch Hot-Dip Galvanized Components. Int. J. Adv. Manuf. Technol. 2023, 1–13. DOI: 10.1007/s00170-023-11045-5.
  • Yokozeki, K.; Vallée, T.; Evers, T.; Albiez, M.; Boretzki, J.; Ummenhofer, T. Hybrid Joints Consisting of Pre-Tensioned Bolts and a Bonded Connection—Part I: Local Approach. Int. J. Adhes. Adhes. 2023:103523. submitted.
  • Yokozeki, K.; Hisazumi, K.; Vallée, T.; Evers, T.; Ummenhofer, T.; Boretzki, J. Hybrid Joints Consisting of Pre-Tensioned Bolts and a Bonded Connection, Part II: Large-Scale Experiments. Int. J. Adhes. Adhes. 2024, 128, 103523. DOI: 10.1016/j.ijadhadh.2023.103523.
  • Jouan, A.; Constantinescu, A. A Critical Comparison of Shear Tests for Adhesive Joints. Int. J. Adhes. Adhes. 2018, 84, 63–79. DOI: 10.1016/j.ijadhadh.2018.02.035.
  • Cognard, J. Y.; Creac’hcadec, R.; Sohier, L.; Davies, P. Analysis of the Nonlinear Behavior of Adhesives in Bonded Assemblies—Comparison of TAST and Arcan Tests. Int. J. Adhes. Adhes. 2008, 28(8), 393–404. DOI: 10.1016/j.ijadhadh.2008.04.006.
  • Bossler, F. C.; Franzblau, M. C.; Rutherford, J. L. Torsion Apparatus for Measuring Shear Properties of Adhesive Bonded Joints. J. Phys. E. Sci. Instrum. 1968, 1(8), 829. DOI: 10.1088/0022-3735/1/8/318.
  • Albiez, M.; Vallée, T.; Fricke, H.; Ummenhofer, T. Adhesively Bonded Steel Tubes — Part I: Experimental Investigations. Int. J. Adhes. Adhes. 2019, 90, 199–210. DOI: 10.1016/j.ijadhadh.2018.02.005.
  • Albiez, M.; Vallée, T.; Ummenhofer, T. Adhesively Bonded Steel Tubes – Part II: Numerical Modelling and Strength Prediction. Int. J. Adhes. Adhes. 2019, 90, 211–224. DOI: 10.1016/j.ijadhadh.2018.02.004.
  • Dan, H.; Sawa, T.; Iwamoto, T.; Hirayama, Y. Stress Analysis and Strength Evaluation of Scarf Adhesive Joints Subjected to Static Tensile Loadings. Int. J. Adhes. Adhes. 2010, 30(6), 387–392. DOI: 10.1016/j.ijadhadh.2010.02.002.
  • Créac’hcadec, R.; Sohier, L.; Cellard, C.; Gineste, B. A Stress Concentration-Free Bonded Arcan Tensile Compression Shear Test Specimen for the Evaluation of Adhesive Mechanical Response. Int. J. Adhes. Adhes. 2015, 61, 81–92. DOI: 10.1016/j.ijadhadh.2015.05.003.
  • Mohr, C. O. Über die Darstellung des Spannungszustandes und des Deformationszustandes eines Körperelementes und über die Anwendung derselben in der Festigkeitslehre. Der Civilingenieur Organ Des Sächsischen Ingenieur- Und Architekten-Vereins. 1882, 28, 112–156.
  • Hencky, H. Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. Z. Angew. Math. Mech. 1924, 4(4), 323–334. DOI: 10.1002/zamm.19240040405.
  • Tserpes, K.; Barroso-Caro, A.; Carraro, P. A.; Beber, V. C.; Floros, I.; Gamon, W.; Kozłowski, M.; Santandrea, F.; Shahverdi, M.; Skejić, D., et al. A Review on Failure Theories and Simulation Models for Adhesive Joints. J. Adhes. 2022, 98(12), 1855–1915.
  • Cognard, J. Y.; Creac’hcadec, R.; Da Silva, L. F. M.; Teixeira, F. G.; Davies, P.; Peleau, M. Experimental Analysis of the Influence of Hydrostatic Stress on the Behaviour of an Adhesive Using a Pressure Vessel. J. Adhes. 2011, 87(7–8), 804–825. DOI: 10.1080/00218464.2011.597318.
  • Bowden, P. B.; Jukes, J. A. The Plastic Flow of Isotropic Polymers. J. Mater. Sci. 1972, 7(1), 52–63. DOI: 10.1007/BF00549550.
  • Asp, L. E.; Berglund, L. A.; Talreja, R. A Criterion for Crack Initiation in Glassy Polymers Subjected to a Composite-Like Stress State. Compos. Sci. Technol. 1996, 56, 1291–1301. DOI: 10.1016/S0266-3538(96)00090-5.
  • Lesser, A. J.; Kody, R. S. A Generalized Model for the Yield Behavior of Epoxy Networks in Multiaxial Stress States. J. Polym. Sci. B. Polym. Phys. 1997, 35, 1611–1619. DOI: 10.1002/(SICI)1099-0488(19970730)35:10<1611:AID-POLB13>3.0.CO;2-D.
  • Kody, R. S.; Lesser, A. J. Deformation and Yield of Epoxy Networks in Constrained States of Stress. J. Mater. Sci. 1997, 32(21), 5637–5643. DOI: 10.1023/A:1018693028394.
  • Chen, W.; Lu, F.; Cheng, M. Tension and Compression Tests of Two Polymers Under Quasi-Static and Dynamic Loading. Polym. Test. 2002, 21(2), 113–121. DOI: 10.1016/S0142-9418(01)00055-1.
  • Gómez-Del Río, T.; Rodríguez, J. Compression Yielding of Epoxy: Strain Rate and Temperature Effect. Mater. Des. 2012, 35, 369–373. DOI: 10.1016/j.matdes.2011.09.034.
  • Harris, J. A.; Adams, R. A. Strength Prediction of Bonded Single Lap Joints by Non-Linear Finite Element Methods. Int. J. Adhes. Adhes. 1984, 4, 65–78. DOI: 10.1016/0143-7496(84)90103-9.
  • Batho, C.; Bateman, E. H. Investigations on Bolts and Bolted Joints. London: Second report of the steel structures research committee, 1934.
  • Amontons, G. De la résistance causée dans les machines, tant par let frottements des parties qui les component, que par la roideur des cordes qu’on y employe, et la maniere de calculer l’un et l’autre. Mémoires de l’Académie Royale A. n.d., 1699, 257–282.
  • Blau, P. J. Amontons’ Laws of Friction. In Encyclopedia of Tribology; Wang, Q. Chung, Y.-W., Eds.; Springer US: US, 2013; pp 71–71. DOI: 10.1007/978-0-387-92897-5_166.
  • Coulomb, C. Théorie des machines simples: En ayant égard au frottement de leurs parties et a la roideur des cordages; Bachelier: US, 1821.
  • Desplanques, Y. Amontons-Coulomb Friction Laws, a Review of the Original Manuscript. SAE Int. J. Mater. Manf. 2014, 8(1), 98–103. DOI: 10.4271/2014-01-2489.
  • Dragoni, E.; Mauri, P. Intrinsic Static Strength of Friction Interfaces Augmented with Anaerobic Adhesives. Int. J. Adhes. Adhes. 2000, 20, 315–321. DOI: 10.1016/S0143-7496(99)00062-7.
  • Dragoni, E.; Mauri, P. Cumulative Static Strength of Tightened Joints Bonded with Anaerobic Adhesives. Proc. I Mech. E Part L. J. Mater. Des. Appl. 2002, 216(1), 9–15. DOI: 10.1243/14644200260044724.
  • Castagnetti, D.; Dragoni, E. Experimental Assessment of a Micro-Mechanical Model for the Static Strength of Hybrid Friction-Bonded Interfaces. J. Adhes. 2013, 89, 642–659. DOI: 10.1080/00218464.2012.747179.
  • Schlimmer, M. Anstrengungshypothese für Metallklebverbindungen. Materialwissenschaft Werkst. 1982, 13(6), 215–221. DOI: 10.1002/mawe.19820130606.
  • Yamamoto, R.; Kinugasa, H. Experimental Study on Performance of High Strength Bolted Friction Joint Using Adhseive. Proc. AIJ Annu. Convention. 2001, C-1, 985–986.
  • Oinonen, A.; Marquis, G. A Parametric Shear Damage Evolution Model for Combined Clamped and Adhesively Bonded Interfaces. Eng. Fract. Mech. 2011, 78, 163–174. DOI: 10.1016/j.engfracmech.2010.10.003.
  • Oinonen, A.; Marquis, G. Shear Decohesion of Clamped Abraded Steel Interfaces Reinforced with Epoxy Adhesive. Int. J. Adhes. Adhes. 2011, 31, 550–558. DOI: 10.1016/j.ijadhadh.2011.05.002.
  • Oinonen, A.; Marquis, G. Shear Damage Simulation of Adhesive Reinforced Bolted Lap-Connection Interfaces. Eng. Fract. Mech. 2013, 109, 341–352. DOI: 10.1016/j.engfracmech.2013.04.016.
  • Blau, P. J. The Significance and Use of the Friction Coefficient. Tribol. Int. 2001, 34, 585–591. DOI: 10.1016/S0301-679X(01)00050-0.
  • Yokozeki, K.; Evers, T.; Vallée, T. Einfluss von Klebstoffen auf die Tragfähigkeit von Hybridverbindungen. Adhäsion KLEBEN & DICHTEN. 2023, 67, 46–51. DOI: 10.1007/s35145-023-1204-3.
  • Crocombe, A. D.; Moult, A. C. The Effect of the Adhesive Thickness on the Strength of a Bonded Joint. In Adhesion 12; Allen, K., Ed.; Springer Netherlands: US, 1988; pp 174–192. DOI: 10.1007/978-94-009-1349-3_12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.