174
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis and Characterization of Paramomycin-loaded CoFe2O4/Polyethylene Glycol – Poly (Lactic-co-glycolic Acid) Core-Shell Spheres for Treatment of Cutaneous Leishmaniasis

, , &
Pages 425-438 | Received 01 Oct 2021, Accepted 09 Jan 2022, Published online: 07 Mar 2022

References

  • Nafari, A.; Cheraghipour, K.; Sepahvand, M.; Shahrokhi, G.; Gabal, E.; Mahmoudvand, H. Nanoparticles: New Agents toward Treatment of Leishmaniasis. Parasite Epidemiol Control. 2020, 10, e00156. DOI: 10.1016/j.parepi.2020.e00156. .
  • Esfandiari, F.; Motazedian, M. H.; Asgari, Q.; Morowvat, M. H.; Molaei, M.; Heli, H. Paromomycin-Loaded Mannosylated Chitosan Nanoparticles: Synthesis, Characterization and Targeted Drug Delivery against Leishmaniasis. Acta Trop. 2019, 197, 105072. DOI: 10.1016/j.actatropica.2019.105072. .
  • Singh, N.; Mishra, B. B.; Bajpai, S.; Singh, R. K.; Tiwari, V. K. Natural Product Based Leads to Fight against Leishmaniasis. Bioorg. Med. Chem. 2014, 22, 18–45. DOI: 10.1016/j.bmc.2013.11.048..
  • Singh, O. P.; Hasker, E.; Boelaert, M.; Sundar, S. Elimination of Visceral Leishmaniasis on the Indian Subcontinent. Lancet. Infect. Dis. 2016, 16, e304–e309. DOI: 10.1016/S1473-3099(16)30140-2..
  • Tiuman, T. S.; Santos, A. O.; Ueda-Nakamura, T.; Dias Filho, B. P.; Nakamura, C. V. Recent Advances in Leishmaniasis Treatment. Int. J. Infect. Dis. 2011, 15, e525–e532. DOI: 10.1016/j.ijid.2011.03.021..
  • Cardona-Arias, J. A.; Vélez, I. D.; Lopez-Carvajal, L. Efficacy of Thermotherapy to Treat Cutaneous Leishmaniasis: A Meta-Analysis of Controlled Clinical Trials. PLoS One. 2015, 10, e0122569. DOI: 10.1371/journal.pone.0122569. .
  • Mallik, R. K. Synthesis and Magnetic Properties of Cobalt Ferrite with Different Morphology. BSc Thesis, Department of Ceramic Engineering, National Institute of Technology, Rourkela, India, 2012. http://ethesis.nitrkl.ac.in/3618/.
  • Gharibshahian, M.; Mirzaee, O.; Nourbakhsh, M. Evaluation of Superparamagnetic and Biocompatible Properties of Mesoporous Silica Coated Cobalt Ferrite Nanoparticles Synthesized via Microwave Modified Pechini Method. J Magn Magn Mater 2017, 425, 48–56. DOI: 10.1016/j.jmmm.2016.10.116. .
  • Palade, P.; Comanescu, C.; Kuncser, A.; Berger, D.; Matei, C.; Iacob, N.; Kuncser, V. Mesoporous Cobalt Ferrite Nanosystems Obtained by Surfactant-Assisted Hydrothermal Method: Tuning Morpho-Structural and Magnetic Properties via pH-Variation. Nanomaterials 2020, 10, 476. DOI: 10.3390/nano10030476. .
  • Kanagesan, S.; Jesurani, S.; Sivakumar, M.; Thirupathi, C.; Kalaivani, T. Effect of Microwave Calcinations on Barium Hexaferrite Synthesized via Sol-Gel Combustion. J. Sci. Res. 2011, 3, 451–456. DOI: 10.3329/jsr.v3i3.6483. .
  • Hayashi, T. Biodegradable Polymers for Biomedical Uses. Prog Polym Sci 1994, 19, 663–702. DOI: 10.1016/0079-6700(94)90030-2..
  • Won, C.-Y.; Chu, C.-C.; Lee, J. D. Novel Biodegradable Copolymers Containing Pendant Amine Functional Groups Based on Aspartic Acid and Poly (Ethylene Glycol). Polymer. 1998, 39, 6677–6681. DOI: 10.1016/S0032-3861(98)00032-9.
  • Samikannu, K.; Sinnappan, J.; Mannarswamy, S.; Cinnasamy, T.; Thirunavukarasu, K. Synthesis and Magnetic Properties of Conventional and Microwave Calcined Strontium Hexaferrite Powder. MSA. 2011, 2, 638–642. DOI: 10.4236/msa.2011.26087.
  • Kanagesan, S.; Jesurani, S.; Velmurugan, R.; Sivakumar, M.; Thirupathi, C.; Kalaivani, T. Synthesis and Magnetic Properties of Conventional and Microwave Calcined Barium Hexaferrite Powder. J. Mater. Sci: Mater. Electron. 2012, 23, 635–639. DOI: 10.1007/s10854-011-0460-4.
  • Sivakumar, M.; Kanagesan, S.; Babu, R. S.; Jesurani, S.; Velmurugan, R.; Thirupathi, C.; Kalaivani, T. Synthesis of CoFe2O4 Powder via PVA Assisted Sol–Gel Process. J. Mater. Sci: Mater. Electron. 2012, 23, 1045–1049. DOI: 10.1007/s10854-011-0545-0. .
  • Li, Y.; Pei, Y.; Zhang, X.; Gu, Z.; Zhou, Z.; Yuan, W.; Zhou, J.; Zhu, J.; Gao, X. PEGylated PLGA Nanoparticles as Protein Carriers: synthesis, Preparation and Biodistribution in Rats. J. Control Release. 2001, 71, 203–211. DOI: 10.1016/s0168-3659(01)00218-8.
  • Mosafer, J.; Teymouri, M.; Abnous, K.; Tafaghodi, M.; Ramezani, M. Study and Evaluation of Nucleolin-Targeted Delivery of Magnetic PLGA-PEG Nanospheres Loaded with Doxorubicin to C6 Glioma Cells Compared with Low Nucleolin-Expressing L929 Cells. Mater. Sci. Eng. C. 2017, 72, 123–133. DOI: 10.1016/j.msec.2016.11.053.
  • Alibolandi, M.; Ramezani, M.; Sadeghi, F.; Abnous, K.; Hadizadeh, F. Epithelial Cell Adhesion Molecule Aptamer Conjugated PEG–PLGA Nanopolymersomes for Targeted Delivery of Doxorubicin to Human Breast Adenocarcinoma Cell Line in Vitro. Int. J. Pharm. 2015, 479, 241–251. DOI: 10.1016/j.ijpharm.2014.12.035.
  • Hajalilou, A.; Mazlan, S. A. A Review on Preparation Techniques for Synthesis of Nanocrystalline Soft Magnetic Ferrites and Investigation on the Effects of Microstructure Features on Magnetic Properties. Appl. Phys A. 2016, 122, 1–15. DOI: 10.1007/s00339-016-0217-2.
  • Hajalilou, A.; Hashim, M.; Ebrahimi-Kahrizsangi, R.; Sarami, N. Influence of CaO and SiO2 co-Doping on the Magnetic, Electrical Properties and Microstructure of a Ni–Zn Ferrite. J. Phys. D: Appl. Phys. 2015, 48, 145001. DOI: 10.1088/0022-3727/48/14/145001.[Mismatch] http://iopscience.iop.org/0022-3727/48/14/145001.
  • Rani, B. J.; Ravina, M.; Saravanakumar, B.; Ravi, G.; Ganesh, V.; Ravichandran, S.; Yuvakkumar, R. Ferrimagnetism in Cobalt Ferrite (CoFe2O4) Nanoparticles. Nano-Struct. Nano-Objects. 2018, 14, 84–91. DOI: 10.1016/j.nanoso.2018.01.012.[Mismatch] .
  • Jing, J.; Liangchao, L.; Feng, X. Structural Analysis and Magnetic Properties of Gd-Doped Li-Ni Ferrites Prepared Using Rheological Phase Reaction Method. J. Rare Earths. 2007, 25, 79–83. DOI: 10.1016/S1002-0721(07)60049-0.
  • Chakraverty, S.; Bandyopadhyay, M. Coercivity of Magnetic Nanoparticles: A Stochastic Model. J. Phys: Condens. Matter. 2007, 19, 216201. DOI: 10.1088/0953-8984/19/21/216201.
  • Toksha, B.; Shirsath, S. E.; Patange, S.; Jadhav, K. Structural Investigations and Magnetic Properties of Cobalt Ferrite Nanoparticles Prepared by Sol–Gel Auto Combustion Method. Solid State Commun. 2008, 147, 479–483. DOI: 10.1016/j.ssc.2008.06.040. .
  • Ashjari, M.; Khoee, S.; Mahdavian, A. R. A Multiple Emulsion Method for Loading 5‐Fluorouracil into a Magnetite‐Loaded Nanocapsule: A Physicochemical Investigation. Polym. Int. 2012, 61, 850–859. DOI: 10.1002/pi.4154. .
  • Joseph, A. M.; Thangaraj, B.; Gomathi, R. S.; Adaikalam, A. A. Synthesis and Characterization of Cobalt Ferrite Magnetic Nanoparticles Coated with Polyethylene Glycol. AdvNanoBioM&D. 2017, 1, 71–77. http://sciedtech.eu/AdvNanoBioMD/Vol%201/Issue%201/ANBMD_2017_1_1_Augustin.pdf.
  • Pauline, S.; Amaliya, A. P. Synthesis and Characterization of Highly Monodispersive CoFe2O4 Magnetic Nanoparticles by Hydrothermal Chemical Route. Arc. Appl. Sci. Res. 2011, 3, 213–223.
  • Waldron, R. Infrared Spectra of Ferrites. Phys. Rev. 1955, 99, 1727–1735. DOI: 10.1103/PhysRev.99.1727.[Mismatch] .
  • Tabatabaei Mirakabad, F. S.; Akbarzadeh, A.; Milani, M.; Zarghami, N.; Taheri-Anganeh, M.; Zeighamian, V.; Badrzadeh, F.; Rahmati-Yamchi, M. A Comparison between the Cytotoxic Effects of Pure Curcumin and Curcumin-Loaded PLGA-PEG Nanoparticles on the MCF-7 Human Breast Cancer Cell Line. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 423–430. DOI: 10.3109/21691401.2014.955108.Epub 2014 Sep 17.
  • Zhou, L.; Ji, L.; Ma, P. C.; Shao, Y.; Zhang, H.; Gao, W.; Li, Y. Development of Carbon Nanotubes/CoFe2O4 Magnetic Hybrid Material for Removal of Tetrabromobisphenol a and Pb(II). J. Hazard. Mater. 2014, 265, 104–114. DOI: 10.1016/j.jhazmat.2013.11.058.
  • Matos, A.; Azevedo, J.; Viçosa, A.; Ricci, E.; Holandino, C.; M, R. 2017 DevelopmentofParomomycin Microparticles ForCutaneous Leishimanisis Treatment. 25th International Conference on Bioencapsulation, Nantes, France, July 3–6.
  • Honary, S.; Jahanshahi, M.; Golbayani, P.; Ebrahimi, P.; Ghajar, K. Doxorubicin-Loaded Albumin Nanoparticles: formulation and Characterization. J. Nanosci. Nanotechnol. 2010, 10, 7752–7757. DOI: 10.1166/jnn.2010.2832.
  • Ghosh, S.; Das, S.; De, A. K.; Kar, N.; Bera, T. Amphotericin B-Loaded Mannose Modified Poly (D, L-Lactide-co-Glycolide) Polymeric Nanoparticles for the Treatment of Visceral Leishmaniasis: In Vitro and in Vivo Approaches. RSC Adv. 2017, 7, 29575–29590. DOI: 10.1039/C7RA04951J. .
  • S, S.; S, M.; P S L, S.; S, S.; S, B.; V, P. Hydrophilic Poly (Ethylene Glycol) Capped Poly (Lactic-co-Glycolic) Acid Nanoparticles for Subcutaneous Delivery of Insulin in Diabetic Rats. Int. J. Biol. Macromol. 2017, 95, 1190–1198. DOI: 10.1016/j.ijbiomac.2016.11.009.
  • Jaafari, M. R.; Bavarsad, N.; Fazly Bazzaz, B. S.; Samiei, A.; Soroush, D.; Ghorbani, S.; Lotfi Heravi, M.; Khamesipour, A. Effect of Topical Liposomes Containing Paromomycin Sulfate in the Course of Leishmania major Infection in Susceptible BALB/c Mice. Antimicrob. Agents Chemother. 2009, 53, 2259–2265. DOI: 10.1128/AAC.01319-08.[Mismatch]
  • Afzal, I.; Sarwar, H. S.; Sohail, M. F.; Varikuti, S.; Jahan, S.; Akhtar, S.; Yasinzai, M.; Satoskar, A. R.; Shahnaz, G. Mannosylated Thiolated Paromomycin-Loaded PLGA Nanoparticles for the Oral Therapy of Visceral Leishmaniasis. Nanomedicine (Lond) 2019, 14, 387–406. DOI: 10.2217/nnm-2018-0038.
  • Nazari-Vanani, R.; Vais, R. D.; Sharifi, F.; Sattarahmady, N.; Karimian, K.; Motazedian, M. H.; Heli, H. Investigation of anti-Leishmanial Efficacy of Miltefosine and Ketoconazole Loaded on Nanoniosomes. Acta Trop. 2018, 185, 69–76. DOI: 10.1016/j.actatropica.2018.05.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.