44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal Stability, Crystallization, and Melting Behaviours of Iodine Doped Semiconducting Polyethylene Terephthalate (PET) Thin Films

&
Received 03 Apr 2024, Accepted 06 Apr 2024, Published online: 15 Apr 2024

References

  • Nisticò, R. Polyethylene Terephthalate (PET) in the Packaging Industry. Polym. Test. 2020, 90, 106707. DOI: 10.1016/j.polymertesting.2020.106707.
  • Thakur, M.; Van Cleave, J. Quadratic Electro-Optic Effect in the Nonconjugated Conductive Polymer Iodine-Doped Polyethylene Terephthalate. J. Macromol. Sci. Part A Pure Appl. Chem. 2023, 60, 92–96. DOI: 10.1080/10601325.2023.2174443.
  • Shen, D.; Chen, W.; Lo, M.; Lee, C. Charge-Transfer Complexes and Their Applications in Optoelectronic Devices. Mater. Today Energy 2021, 20, 100644. DOI: 10.1016/j.mtener.2021.100644.
  • Moulay, S. Molecular Iodine/Polymer Complexes. J. Polym. Eng. 2013, 33, 389–443. DOI: 10.1515/polyeng-2012-0122.
  • Bendrea, A. D.; Cianga, L.; Cianga, I. Review Paper: Progress in the Field of Conducting Polymers for Tissue Engineering Applications. J. Biomater. Appl. 2011, 26, 3–84. DOI: 10.1177/0885328211402704.
  • Swamy, R.; Rajagopalan, H.; Vippa, P.; Thakur, M.; Sen, A. Quadratic Electro-Optic Effect in a Nano-Optical Material Based on the Nonconjugated Conductive Polymer, Poly(Ethylenepyrrolediyl) Derivative. Solid State Commun. 2007, 143, 519–521. DOI: 10.1016/j.ssc.2007.07.013.
  • Sreelatha, K.; Predeep, P. Iodine Doped, Semi-Conducting Nylon 6 Polymers. J. Plast. Film Sheeting 2013, 29, 127–143. DOI: 10.1177/875608791246403.
  • Sreelatha, K.; Predeep, P. Electrically Conducting Plastic Films from Polyethylene Terephthalate for Optoelectronic Applications. Polym. Sci. Ser. A 2013, 55, 480–486. DOI: 10.1134/S0965545X13070031.
  • Predeep, P.; Mathew, A. M. Intrinsically Conducting Rubbers: Toward Micro Applications. Rubber Chem. Technol. 2011, 84, 366–401. DOI: 10.5254/1.3592283.
  • Van Cleave, J.; Thakur, M. Photovoltaic Cells Involving the Nonconjugated Conductive Polymer Iodine-Doped Styrene-Butadiene-Rubber (SBR). J. Macromol. Sci. Part A Pure Appl. Chem. 2015, 52, 798–800. DOI: 10.1080/10601325.2015.1067022.
  • Predeep, P.; Sreeja, R.; Alex, R.; Sharma, P. D. Development of Organic Semiconductors for Optoelectronic Applications from Pre-Vulcanised Natural Rubber Latex. Prog. Rubber. Plast. Recycl. Technol. 2004, 20, 187–200. DOI: 10.1177/1477760604020003.
  • Ma, L. P.; Liu, J.; Yang, Y. Organic Electrical Bistable Devices and Rewritable Memory Cells. Appl. Phys. Lett. 2002, 80, 2997–2999. DOI: 10.1063/1.1473234.
  • Predeep, P.; Devasia, D.; Aneesh, J.; Faseena, N. M. Organic Bistable Memory Device from Natural Rubber (Cis 1,4 Polyisoprene)/Fullerene Nanocomposite Thin Films. Microelectron. Eng. 2013, 107, 54–57. DOI: 10.1016/j.mee.2013.02.077.
  • Aneesh, J.; Predeep, P. Organic Memory Devices with Natural Rubber/Fullerene Composites. Rubber Chem. Technol. 2013, 86, 626–632. DOI: 10.5254/rct.13.87959.
  • Yamamoto, T.; Kuroda, S. Iodine-Polymer Adducts as Active Materials for Positive Electrodes of Galvanic Cells. J. Electroanal. Chem. 1983, 158, 1–11. DOI: 10.1016/S0022-0728(83)80333-7.
  • Malhotra, B. D. Handbook of Polymers in Electronics; Rapra Technology Ltd., Polestar Scientifica: Exeter, 2002.
  • Lin, J.; Liang, J.; Feng, J.; Karadeniz, B.; Lü, J.; Cao, R. Iodine Uptake and Enhanced Electrical Conductivity in a Porous Coordination Polymer Based on Cucurbit[6]Uril. Inorg. Chem. Front. 2016, 3, 1393–1397. DOI: 10.1039/C6QI00305B.
  • Thakur, M. Nonconjugated Conductive Polymers for Protection against Nuclear Radiation Including Radioactive Iodine. Radiat. Prot. Environ. 2020, 43, 148–153. DOI: 10.4103/rpe.RPE_33_20.
  • Beyler, C. L.; Hirscler, M. M. Thermal Decomposition of Polymers. In SFPE Hand Book of Fire Protection and Engineering; DiNenno, P. J., Ed.; NFPA: Quincy, MA, 2002.
  • Montaudo, G.; Puglisi, C.; Samperi, F. Primary Thermal Degradation Mechanisms of PET and PBT. Polym. Degrad. Stab. 1993, 42, 13–28. DOI: 10.1016/0141-3910(93)90021-A.
  • Coats, A. W.; Red Fern, J. P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. DOI: 10.1038/201068a0.
  • Jayasree, T. K.; Predeep, P. Non-isothermal Crystallization Behavior of Styrene Butadiene Rubber/High Density Polyethylene Binary Blends. J. Therm. Anal. Calorim. 2012, 108, 1151–1160. DOI: 10.1007/s10973-012-2257-y.
  • Rao, V.; Johns, J. Thermal Behavior of Chitosan/Natural Rubber Latex Blends TG and DSC Analysis. J. Therm. Anal. Calorim. 2008, 92, 801–806. DOI: 10.1007/s10973-007-8854-5.
  • Charles, J.; Ramkumaar, G. R.; Azhagiri, S.; Gunasekaran, S. FTIR and Thermal Studies on Nylon-66 and 30% Glass Fibre Reinforced Nylon-66. E-J. Chem. 2009, 6, 23–33. DOI: 10.1155/2009/909017.
  • Schaffer, M. A.; Marchildon, E. K.; Mcauley, K. B.; Cunningham, M. F. Thermal Non-oxidative Degradation of Nylon 6,6. J. Macromol. Sci. Rev. Macromol. Chem. Phys. 2000, 40, 233–272. DOI: 10.1081/MC-100102398.
  • Li, J.; Zhou, C.; Wang, G.; Tao, Y.; Liu, Q.; Li, Y. Isothermal and Nonisothermal Crystallization Kinetics of Elastomeric Polypropylene. Polym. Test. 2002, 21, 583–589. DOI: 10.1016/S0142-9418(01)00128-3.
  • Weng, W.; Chen, G.; Wu, D. Crystallization Kinetics and Melting Behaviours of Nylon 6/Foliated Graphite Nanocomposites. Polymer 2003, 44, 8119–8132. DOI: 10.1016/j.polymer.2003.10.028.
  • Sajkiewicz, P.; Carpaneto, L.; Wasiak, A. Application of the Ozawa Model to Non-isothermal Crystallization of Poly(Ethylene Terephthalate). Polymer 2001, 42, 5365–5370. DOI: 10.1016/S0032-3861(00)00934-4.
  • Wang, Y.; Gao, J.; Ma, Y.; Agarwal, U. S. Study on Mechanical Properties, Thermal Stability and Crystallization Behavior of PET/MMT Nanocomposites. Compos. B Eng. 2006, 37, 399–407. DOI: 10.1016/j.compositesb.2006.02.014.
  • Kráčalík, M.; Studenovský, M.; Mikešová, J.; Kovářová, J.; Sikora, A.; Thomann, R.; Friedrich, C. Recycled PET-Organoclay Nanocomposites with Enhanced Processing Properties and Thermal Stability. J. Appl. Polym. Sci. 2007, 106, 2092–2100. DOI: 10.1002/app.26858.
  • Habibi, Y.; El-Zawawy, W. K.; Ibrahim, M. M.; Dufresne, A. Processing and Characterization of Reinforced Polyethylene Composites Made with Lignocellulosic Fibers from Egyptian Agro-Industrial Residues. Compos. Sci. Technol. 2008, 68, 1877–1885. DOI: 10.1016/j.compscitech.2008.01.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.