2,063
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Upper Extremity Proprioception After Stroke: Bridging the Gap Between Neuroscience and Rehabilitation

&
Pages 27-34 | Received 27 Jun 2015, Accepted 21 Jul 2016, Published online: 11 Oct 2016

References

  • Aman, J. E., Elangovan, I. L. Y., & Konczak, J. (2014). The effectiveness of proprioceptive training for improving motor function: A systematic review. Frontiers in Human Neuroscience, 8, 1075.
  • Anema, H. A., van Zandvoort, M. J. E., de Haan, E. H. F., Kappelle, L., de Kort, P. L. M., … Dijkerman, H. C. (2009). A double dissociation between somatosensory processing for perception and action. Neuropsychologia, 47, 1615–1620. doi: 10.1016/j.neuropsychologia.2008.11.001
  • Bertrand, A. M., Mercier, C., Shun, P. L. W., Bourbonnais, D., & Desrosiers, J. (2004). Effects of weakness on symmetrical bilateral grip force exertion in subjects with hemiparesis. Journal of Neurophysiology, 91, 1579–1585. doi: 10.1152/jn.00597.2003
  • Bickley, L. S., & Szilagyi, P. G. (2007). Bates' guide to physical examination and history taking (9th ed.). Hagerstown, MD: Lippincott, Williams & Wilkins.
  • Bobath, B. (1990). Adult hemiplegia: Evaluation and treatment. London, England: William Heineman Medical Books.
  • Borchers, S., Hauser, T. K., & Himmelbach, M. (2011). Bilateral hand representations in human primary proprioceptive areas. Neuropsychologia, 49, 3383–3391. doi: 10.1016/j.neuropsychologia.2011.08.013
  • Borstad, A. L., Bird, T., Choi, S., Goodman, L.P.S., & Nichols-Larsen, D. S. (2013). Sensorimotor training and neural reorganization after stroke: A case series. Journal of Neurologic Physical Therapy, 37, 27–36.
  • Broeks, J. G., Lankhorst, G. J., Rumping, K., & Prevo, A. J. H. (1999). The long-term outcome of arm function after stroke: Results of a follow-up study. Disability and Rehabilitation, 21, 357–364.
  • Burke, D., Hagbarth, K. E., Löfstedt, L., & Wallin, B. G. (1976). The responses of human muscle spindle endings to vibration during isometric contraction. The Journal of Physiology, 261, 695–711.
  • Carey, L. M., Macdonell, R., & Matyas, T. A. (2011). SENSe: Study of the effectiveness of neurorehabilitation on sensation: A randomized controlled trial. Neurorehabilitation and Neural Repair, 25, 304–313. doi: 10.1177/1545968310397705
  • Carey, L. M., & Matyas, T. A. (2005). Training of somatosensory discrimination after stroke. American Journal of Physical Medicine and Rehabilitation, 84, 428–442. doi: 10.1097/01.phm.0000159971.12096.7f
  • Carey, L. M., Matyas, T. A., & Oke, L. E. (1993). Sensory loss in stroke patients: Effective training of tactile and proprioceptive discrimination. Archives of Physical Medicine and Rehabilitation, 74, 602–611.
  • Carey, L. M., Oke, L. E., & Matyas, T. A. (1996). Impaired limb position sense after stroke: A quantitative test for clinical use. Archives of Physical Medicine and Rehabilitation, 77, 1271–1278.
  • Carr, J., & Shepherd, R. (1987). A motor relearning programme for stroke (2nd ed.). Oxford, England: Butterworth-Heinemann.
  • Carr, S., Borreggine, K., Heilman, J., Griswold, M., & Walter, B. L. (2013). Novel magnetomechanical MR compatible vibrational device for producing kinesthetic illusion during fMRI. Medical Physics, 40, 112303. doi: 10.1118/1.4824695
  • Chakravarty, Mar., Broadbent, S., Rosa-Neto, P., Lambert, C. M., & Collins, Dis. (2009). Design, construction, and validation of an MRI-compatible vibrotactile stimulator intended for clinical use. Journal of Neuroscience Methods, 184, 129–135. doi: 10.1016/j.jneumeth.2009.07.018
  • Chester, C. S., & McLaren, C. E. (1989). Somatosensory evoked response and recovery from stroke. Archives of Physical Medicine and Rehabilitation, 70, 520–525.
  • Chung, Y. G., Kim, J., Han, S. W., Kim, H.-S., Choi, M. H., Chung, S.-C., … Kim, S.-P.. (2013). Frequency-dependent patterns of somatosensory cortical responses to vibrotactile stimulation in humans: A fMRI study. Brain Research, 1504, 47–57. doi: 10.1016/j.brainres.2013.02.003
  • Clark, F. J., Burgess, R. C., & Chapin, J. W. (1986). Proprioception with the proximal interphalangeal joint of the index finger. Evidence for a movement sense without a static-position sense. Brain, 109, 1195–1208.
  • Clark, F. J., Horch, K. W., Bach, S. M., & Larson, G. F. (1979). Contributions of cutaneous and joint receptors to static knee-position sense in man. Journal of Neurophysiology, 42, 877–888.
  • Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., … Schwartz, A. B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 381, 557–564.
  • Collins, D. F., Refshauge, K. M., & Gandevia, S. C. (2000). Sensory integration in the perception of movements at the human metacarpophalangeal joint. Journal of Physiology, 592, 505–515.
  • Connell, L. A., Lincoln, N. B., & Radford, K. A. (2008). Somatosensory impairment after stroke: Frequency of different deficits and their recovery. Clinical Rehabilitation, 22, 758–767. doi: 10.1177/0269215508090674
  • Connell, L. A., & Tyson, S. (2012). Measures of sensation in neurological conditions: A systematic review. Clinical Rehabilitation, 26, 68–80. doi: 10.1177/0269215511412982
  • Conrad, M. O., Scheidt, R. A., & Schmit, B. D. (2011). Effects of wrist tendon vibration on arm tracking in people poststroke. Journal of Neurophysiology, 106, 1480–1488.
  • Cordo, P., Lutsep, H., Cordo, L., Wright, W. G., Cacciatore, T., & Skoss, R. (2009). Assisted movement with enhanced sensation (AMES): Coupling motor and sensory to remediate motor deficits in chronic stroke patients. Neurorehabilitation and Neural Repair, 23, 67–77. doi: 10.1177/1545968308317437
  • Cusmano, I., Sterpi, I., Mazzone, A., Ramat, S., Delconte, C., Pisano, F., & Colombo, R. (2014). Evaluation of upper limb sense of position in healthy individuals and patients after stroke. Journal of Healthcare Engineering, 5, 145–162.
  • de Weerdt, W., Lincoln, N. B., & Harrison, M. A. (1987). Prediction of arm and hand function recovery in stroke patients. International Journal of Rehabilitation Research, 10(4 Suppl 5), 110–112.
  • Dijkerman, H. C., & de Haan, E. H. F.. (2007). Somatosensory processes subserving perception and action. Behavioral and Brain Sciences, 30, 189–239.
  • Doyle, S., Bennett, S., Fasoli, S. E., & McKenna, K. T. (2010). Interventions for sensory impairment in the upper limb after stroke. Cochrane Database Systematic Review, 6, CD006331. doi: 10.1002/14651858.CD006331.pub2
  • Dukelow, S. P., Herter, T. M., Bagg, S. D., & Scott, S. H. (2012). The independence of deficits in position sense and visually guided reaching following stroke. Journal of Neuroengineering and Rehabilitation, 9, 72. doi: 10.1186/1743-0003-9-72
  • Dukelow, S. P., Herter, T. M., Moore, K. D., Demers, M. J., Glasgow, J. I., Bagg, S. D., … Scott, H. S. (2010). Quantitative assessment of limb position sense following stroke. Neurorehabilitation and Neural Repair, 24, 178–187. doi: 10.1177/1545968309345267
  • Edin, B. B. (2001). Cutaneous afferents provide information about knee joint movements in humans. Journal of Physiology, 53, 289–297.
  • Edin, B. B., & Abbs, J. H. (1991). Finger movement responses of curtaneous mechanoreceptors in th dorsal skin of the human hand. Journal of Neurophysiology, 65, 657–670.
  • Ferrell, W. R., Gandevia, S. C., & McCloskey, D. I.. (1987). The role of joint receptors in human kinaesthesia when intramuscular receptors cannont contribute. Journal of Physiology, 386, 63–71.
  • Findlater, S. E., Desai, J. A., Semrau, J. A., Kenzie, J. M., Rorden, C., Herter, T. M., … Dukelow, S. P. (2016). Central perception of position sense involves a distributed neural network - Evidence from lesion-behavior analyses. Cortex, 18(79), 42–56.
  • Gandevia, S. C., & McCloskey, D. I. (1976). Joint sense, muscle sense, and their combination as position sense, measured at the distal interphalangeal joint of the middle finger. Journal of Physiology, 260, 387–407.
  • Gandevia, S. C., & McCloskey, D. I. (1977). Sensations of heaviness. Brain, 100, 345–354. doi: 10.1093/brain/100.2.345
  • Garraway, W. M., Akhtar, A. J., Gore, S. M., Prescott, R. J., & Smith, R. G. (1976). Observer variation in the clinical assessment of stroke. Age and Ageing, 5, 233–240.
  • Goble, D. J., & Brown, S. H. (2009). Dynamic proprioceptive target matching behavior in the upper limb: Effects of speed, task difficulty and arm/hemisphere asymmetries. Behavioural Brain Research, 200, 7–14. doi: 10.1016/j.bbr.2008.11.034
  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25. doi: 10.1016/0166-2236(92)90344-8
  • Goodwin, G. M., McCloskey, D. I., & Matthews, P. B. C. (1972). The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain, 95, 705–748.
  • Hagura, N., Oouchida, Y., Aramaki, Y., Okada, T., Matsumura, M., Sadato, N., & Naito, E. (2009). Visuokinesthetic perception of hand movement is mediated by cerebro–cerebellar interaction between the left cerebellum and right parietal cortex. Cerebral Cortex, 19, 176–186. doi: 10.1093/cercor/bhn068
  • Herter, T. M., Scott, S. H., & Dukelow, S. P. (2014). Systematic changes in position sense accompany normal aging across adulthood. Journal of Neuroengineering and Rehabilitation, 11, 43. doi: 10.1186/1743-0003-11-43
  • Hirayama, K., Fukutake, T., & Kawamura, M. (1999). “Thumb localizing test” for detecting a lesion in the posterior column-medial lemniscal system. Journal of the Neurological Sciences, 167, 45–49.
  • Holmqvist, B., Oscarsson, O., & Rosén, I. (1963). Functional organization of the cuneocerebellar tract in the cat. Acta Physiologica Scandinavica, 58, 216–235. doi: 10.1111/j.1748-1716.1963.tb02643.x
  • Horch, K. W., Clark, F. J., & Burgess, P. R. (1975). Awareness of knee joint angle under static conditions. Journal of Neurophysiology, 38, 1436–1447.
  • Hughes, C. M., Tommasino, P., Budhota, A., & Campolo, D. (2015). Upper extremity proprioception in healthy aging and stroke populations, and the effects of therapist- and robot-based rehabilitation therapies on proprioceptive function. Frontiers in Human Neuroscience, 9, 120.
  • Hunt, C. C. (1990). Mammalian muscle spindle: Peripheral mechanisms. Physiological Reviews, 70, 643–663.
  • Iwamura, Y., & Tanaka, M. (1996). Representation of reaching and grasping in the monkey postcentral gyrus. Neuroscience Letters, 214, 147–150. doi: http://dx.doi.org/10.1016/0304-3940(96)12911-6
  • Jami, L. (1992). Golgi tendon organs in mammalian skeletal muscle: Functional properties and central actions. Physiological Reviews, 72, 623–666.
  • Jones, S. A. H., Cressman, E. K., & Henriques, D. Y. P. (2010). Proprioceptive localization of the left and right hands. Experimental Brain Research, 204, 373–383. doi: 10.1007/s00221-009-2079-8
  • Kang, N., & Cauraugh, J. H.. (2015). Force control in chronic stroke. Neuroscience and Biobehavioral Reviews, 52, 38–48. doi: http://dx.doi.org/10.1016/j.neubiorev.2015.02.005
  • Kenzie, J. M., Semrau, J. A., Findlater, S. E., Herter, T. M., Hill, M. D., Scott, S. H., & Dukelow, S. P. (2014). Anatomical correlates of proprioceptive impairments following acute stroke: A case series. Journal of the Neurological Sciences, 342, 52–61. doi: http://dx.doi.org/10.1016/j.jns.2014.04.025
  • Kenzie, J. M., Semrau, J. A., Findlater, S. E., Desai, J. A., Yu, A. Y., Herter, T. M., … Dukelow, S. P. (2015). Lesion location is associated with kinesthetic impairment post-stroke. Neuroscience 2015 Abstracts. Chicago, IL: Society for Neuroscience, 2015. Online.
  • Kim, J. S., Kim, H. G., & Chung, C. S. (1995). Medial medullary syndrome: Report of 18 new patients and a review of the literature. Stroke, 26, 1548–1552. doi: 10.1161/01.str.26.9.1548
  • Lafargue, G., Paillard, J., Lamarre, Y., & Sirigu, A. (2003). Production and perception of grip force without proprioception: Is there a sense of effort in deafferented subjects? European Journal of Neuroscience, 17, 2741–2749. doi: 10.1046/j.1460-9568.2003.02700.x
  • Levin, M. F., & Panturin, E. (2011). Sensorimotor integration for functional recovery and the Bobath approach. Motor Control, 15, 285–301.
  • Li, K. Y., & Wu, Y. H.. (2014). Clinical evaluation of motion and position sense in the upper extremities of the elderly using motion analysis system. Clinical Interventions in Aging, 9, 1123–1131.
  • Lin, C. H., Chou, L. W., Luo, H. J., Tsai, P. Y., Lieu, P. K., Chiang, S. L., & Sung, W. H.. (2015). Effects of computer-aided interlimb force coupling training on paretic hand and arm motor control following chronic stroke: A randomized controlled trial. PloS One, 10, e0131048.
  • Lincoln, N., Crow, J., Jackson, J., Waters, G., Adams, S., & Hodgson, P. (1991). The unreliability of sensory assessments. Clinical Rehabilitation, 5, 273–282. doi: 10.1177/026921559100500403
  • London, B. M., & Miller, L. E. (2013). Responses of somatosensory area 2 neurons to actively and passively generated limb movements. Journal of Neurophysiology, 109(6), 1505-1513. doi: 10.1152/jn.00372.2012
  • Matthews, P. B. C. (1972). Mammalian muscle receptors and their central actions. London, England: Arnold.
  • McCloskey, D. I., Ebeling, P., & Goodwin, G. M. (1974). Estimation of weights and tensions and apparent involvement of a “sense of effort”. Experimental Neurology, 42, 220–232. doi: http://dx.doi.org/10.1016/0014-4886(74)90019-3
  • McCloskey, D. I. (1973). Differences between the senses of movement and position shown by the effects of loading and vibration of muscles in man. Brain Research, 63, 119–131.
  • Meehan, S. K., Dao, E., Linsdell, M. A., & Boyd, L. A. (2011). Continuous theta burst stimulation over the contralesional sensory and motor cortex enhances motor learning post-stroke. Neuroscience Letters, 500, 26–30. doi: http://dx.doi.org/10.1016/j.neulet.2011.05.237
  • Meehan, S. K., Zabukovec, J. R., Dao, E., Cheung, K. L., Linsdell, M. A., & Boyd, L. A. (2013). One hertz repetitive transcranial magnetic stimulation over dorsal premotor cortex enhances offline motor memory consolidation for sequence-specific implicit learning. European Journal of Neuroscience, 38, 3071–3079. doi: 10.1111/ejn.12291
  • Meyer, S., Karttunen, A. H., Thijs, V., Feys, H., & Verheyden, G.. (2014). How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? a systematic review. Physical Therapy, 94, 1220–1231.
  • Morris, J. H., Van Wijck, F., Joice, S., & Donaghy, M. (2013). Predicting health related quality of life 6 months after stroke: The role of anxiety and upper limb dysfunction. Disability and Rehabilitation, 35, 291–299.
  • Naito, E., Nakashima, T., Kito, T., Aramaki, Y., Okada, T., & Sadato, N. (2007). Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. The European Journal of Neuroscience, 25, 3476–3487. doi: 10.1111/j.1460-9568.2007.05587.x
  • Naito, E., Roland, P. E., Grefkes, C., Choi, H. J., Eickhoff, S., Geyer, S., … Ehrsson, H. H. (2005). Dominance of the right hemisphere and role of area 2 in human kinesthesia. Journal of Neurophysiology, 93, 1020–1034. doi: 10.1152/jn.00637.2004
  • Pause, M., Kunesch, E., Binkofski, F., & Freund, H. J. (1989). Sensorimotor disturbances in patients with lesions of the parietal cortex. Brain, 112, 1599–1625. doi: 10.1093/brain/112.6.1599
  • Proske, U., & Gandevia, S. C.. (2012). The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews, 92, 1651–1697. doi: 10.1152/physrev.00048.2011
  • Prud'Homme, M. J. L., & Kalaska, J. F.. (1994). Proprioceptive activity in primate primary somatotsensory cortex during active arm reaching movements. Journal of Neurophysiology, 72, 2280–2301.
  • Refshauge, K. M., Collins, D. F., & Gandevia, S. C. (2003). The detection of human finger movement is not facilitated by input from receptors in adjacent digits. The Journal of Physiology, 551, 371–377. doi: 10.1113/jphysiol.2003.045997
  • Refshauge, K. M., Kilbreath, S. L., & Gandevia, S. C. (1998). Joint sense, muscle sense, and their combination as position sense, measured at the distal interphalangeal joint of the middle finger. Experimental Brain Research, 122, 515–542.
  • Rincon-Gonzalez, L., Naufel, S. N., Santos, V. J., & Helms Tillery, S. (2012). Interactions between tactile and proprioceptive representations in haptics. Journal of Motor Behavior, 44, 391–401. doi: 10.1080/00222895.2012.746281
  • Roland, P. E., & Ladegaard-Pedersen, H. (1977). A quantitative analysis of sensations of tension and of kinaesthesia in man. Evidence for a peripherally originating muscular sense and sense of effort. Brain, 100, 671–692. doi: 10.1093/brain/100.4.671
  • Romaiguère, P., Anton, J. L., Roth, M., Casini, L., & Roll, J. P. (2003). Motor and parietal cortical areas both underlie kinaesthesia. Cognitive Brain Research, 16, 74–82. doi: http://dx.doi.org/10.1016/S0926-6410(02)00221-5
  • Rosenkranz, K., & Rothwell, J. C.. (2012). Modulation of proprioceptive integration in the motor cortex shapes human motor learning. The Journal of Neuroscience, 32, 9000–9006. doi: 10.1523/jneurosci.0120-12.2012
  • Rothwell, J. C., Traub, M. M., Day, B. L., Obeso, J. A., Thomas, P. K., & Marsden, C. D.. (1982). Manual motor performance in a deafferented man. Brain, 105, 515–542.
  • Sacco, R. L., Bello, J. A., Traub, R., & Brust, J. C.. (1987). Selective proprioceptive loss from a thalamic lacunar stroke. Stroke, 18, 1160–1163. doi: 10.1161/01.str.18.6.1160
  • Sainburg, R. L. (1995). Control of limb dynamics in normal subjects and patients without proprioception. Journal of Neurophysiology, 73, 820–835.
  • Schabrun, S. M., & Hillier, S.. (2009). Evidence for the retraining of sensation after stroke: A systematic review. Clinical Rehabiliation, 23, 27–39.
  • Schaefer, S. Y., Mutha, P. K., Haaland, K. Y., & Sainburg, R. L. (2012). Hemispheric specialization for movement control produces dissociable differences in online corrections after stroke. Cerebral Cortex, 22, 1407–1419. doi: 10.1093/cercor/bhr237
  • Schwartz, A. B., Cui, X. T., Weber, D. J., & Moran, D. W. (2006). Brain-controlled interfaces: Movement restoration with neural prosthetics. Neuron, 52, 205–220.
  • Scotland, S., Adamo, D. E., & Martin, B. J.. (2014). Sense of effort revisited: Relative contributions of sensory feedback and efferent copy. Neuroscience Letters, 561, 208–212. doi: 10.1016/j.neulet.2013.12.041
  • Scott, S. H., & Dukelow, S. P. (2011). Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. Journal of Rehabilitation Research and Development, 48, 335–354.
  • Semrau, J. A., Herter, T. M., Scott, S. H., & Dukelow, S. P. (2013). Robotic identification of kinesthetic deficits after stroke. Stroke, 44, 3414–3421.
  • Semrau, J. A., Herter, T. M., Scott, S. H., & Dukelow, S. P. (2015). Examining differences in patterns of sensory and motor recovery after stroke with robotics. Stroke, 46, 3459–3469.
  • Sherrington, C. S. (1907). On the proprioceptive system, especially in its reflex aspect. Brain, 29, 467–482.
  • Smania, N., Montagnana, B., Faccioli, S., Fiaschi, A., & Aglioti, S. M. (2003). Rehabilitation of somatic sensation and related deficit of motor control in patients with pure sensory stroke. Archives of Physical Medicine and Rehabilitation, 84, 1692–1702. doi: 10.1053/S0003-9993(03)00277-6
  • Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual neural inversion. Journal of Comparative and Physiological Psychology, 43, 482–489.
  • Tabot, G. A., Kim, S. S., Winberry, J. E., & Bensmaia, S. J. (2015). Restoring tactile and proprioceptive sensation through a brain interface. Neurobiology of Disease, 83, 191–198.
  • Tyson, S. F., Hanley, M., Chillala, J., Selley, A. B., & Tallis, R. C. (2008). Sensory loss in hospital-admitted people with stroke: Characteristics, associated factors, and relationship with function. Neurorehabilitation and Neural Repair, 22, 166+.
  • Voss, D. E. (1967). Proprioceptive neuromuscular facilitation. American Journal of Physical Medicine, 46, 838–898.
  • Wade, D. T., Langton-Hewer, R., Wood, V. A., Skilbeck, C. E., & Ismail, H. M. (1983). The hemiplegic arm after stroke: Measurement and recovery. Journal of Neurology, Neurosurgery, and Psychiatry, 46, 521–524.
  • Walsh, L. D., Proske, U., Allen, T. J., & Gandevia, S. C. (2013). The contribution of motor commands to position sense differs between elbow and wrist. Journal of Physiology, 591, 6103–6114.
  • Weber, D. J., Friesen, R., & Miller, L. E. (2012). Interfacing the somatosensory system to restore touch and proprioception: Essential considerations. Journal of Motor Behavior, 44, 403–418. doi: 10.1080/00222895.2012.735283
  • Weiller, C., Jüptner, M., Fellows, S., Rijntjes, M., Leonhardt, G., Kiebel, S., …. Thilmann, F. A. (1996). Brain representation of active and passive movements. Neuroimage, 4, 105–110. doi: 10.1006/nimg.1996.0034
  • Wilson, E. T., Wong, J., & Gribble, P. L. (2010). Mapping proprioception across a 2D horizontal workspace. PloS One, 5, e11851. doi: 10.1371/journal.pone.0011851
  • Winter, J. A., Allen, T. J., & Proske, U. (2005). Muscle spindle signals combine with the sense of effort to indicate limb position. The Journal of Physiology, 568, 1035–1046. doi: 10.1113/jphysiol.2005.092619
  • Yekutiel, M., & Guttman, E. (1993). A controlled trial of the retraining of the sensory function of th hand in stroke patients. Journal of Neurology, 56, 241–244.
  • Yozbatiran, N., Donmez, B., Kayak, N., & Bozan, O. (2006). Electrical stimulation of wrist and fingers for sensory and functional recovery in acute hemiplegia. Clinical Rehabilitation, 20, 4–11. doi: 10.1191/0269215506cr928oa

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.