2,541
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Perceptions of plant breeding methods–from ‘phenotypic selection’ to ‘genetic modification’ and ‘new breeding technologies’

ORCID Icon
Received 20 Jan 2023, Accepted 02 Mar 2023, Published online: 22 Mar 2023

References

  • Acquaah G. 2015. Conventional plant breeding principles and techniques. In: Al-Khayri J, Jain S, Johnson D, editor. Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Cham: Springer; p. 115–158. doi:10.1007/978-3-319-22521-0_5
  • Adenle AA. 2017. Chapter 14. The precautionary principle as a barrier to GMO risk analysis: elicitation of experts’ viewpoints. In: Adenle AA, Murphy DJ, Morris EJ, editors. Genetically modified organisms in developing countries: risk analysis and governance. Cambridge: Cambridge University Press; p. 162–172.
  • Adli M. 2018. The CRISPR tool kit for genome editing and beyond. Nature Communications. 9:Article 1911. doi:10.1038/s41467-018-04252-2.
  • Aerni P. 2019. Politicizing the precautionary principle: why disregarding facts should not pass for farsightedness. Frontiers in Plant Science. 10:Article 1053. doi:10.3389/fpls.2019.01053.
  • Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M, Zhou W. 2020. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences. 21:Article 2590. doi:10.3390/ijms21072590.
  • Ahmar S, Mahmood T, Fiaz S, Mora-Poblete F, Shafique MS, Chattha MS, Jung K-H. 2021. Advantage of nanotechnology-based genome editing system and its application in crop improvement. Frontiers in Plant Science. 12:Article 663849. doi:10.3389/fpls.2021.663849.
  • Allard RW. 1960. Principles of plant breeding. New York: John Wiley and Sons Inc.
  • Allied Market Research. 2022. Gene editing market by technology: Global opportunity analysis and industry forecast 2021-2031; [accessed 25 February 2023] https://www.alliedmarketresearch.com/gene-editing-market-A10973.
  • Amann W, Khan S, Salzmann O, Steger U, Lonescu-Somer A. 2007. Managing external pressures through corporate diplomacy. Journal of General Management. 33:33–50. doi:10.1177/030630700703300103.
  • Andersson M, Turesson H, Nicolia A, Fält A-S, Samuelsson M, Hofvander P. 2017. Efficient targeted multiallelic mutagenesis in tetraploid potato (solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports. 36:117–128. doi:10.1007/s00299-016-2062-3.
  • Anyshchenko A, Yarnold J. 2021. From ‘mad cow’ crisis to synthetic biology: challenges to EU regulation of GMOs beyond the European context. International Environmental Agreements: Politics, Law and Economics. 21:391–404. doi:10.1007/s10784-020-09516-1.
  • Ashby E. 1937. Studies in the inheritance of physiological characters: III. Hybrid vigour in the tomato: part. 1. Manifestations of hybrid vigour from germination to the onset of flowering. Annals of Botany. 1:11–41. http://www.jstor.org/stable/42908405.
  • Ashraf M, Foolad MR. 2013. Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breeding. 132:10–20. doi:10.1111/pbr.12000.
  • Atanassova A, Keiper F. 2018. Plant breeding innovation: a global regulatory perspective. Cereal Chemistry. 95:8–16. doi:10.1002/cche.10021.
  • Balfourier F, Bouchet S, Robert S, De Oliveira R, Rimbert H, Kitt J, Choulet F, International Wheat Genome Sequencing Consortium, Breed Wheat Consortium, Paux E. 2019. Worldwide phylogeography and history of wheat genetic diversity. Science Advances. 5:Article eaav0536. doi:10.1126/sciadv.aav0536.
  • Balocchi OA, López IF. 2009. Herbage production, nutritive value and grazing preference of diploid and tetraploid perennial ryegrass cultivars (lolium perenne L.). Chilean Journal of Agricultural Research. 69:331–339.
  • Bandyopadhyay A, Kancharla N, Javalkote VS, Dasgupta S, Brutnell TP. 2020. CRISPR-Cas12a (Cpf1): A versatile tool in the plant genome editing tool box for agricultural advancement. Frontiers in Plant Science. 11:Article 584151. doi:10.3389/fpls.2020.584151.
  • Baral K, Coulman B, Biligetu B, Fu Y-B. 2020. Advancing crested wheatgrass [agropyron cristatum (L.) Gaertn.] breeding through genotyping-by-sequencing and genomic selection. PLOS ONE. 15: Article 20239609. doi:10.1371/journal.pone.0239609.
  • Barman M, Ghosh S, Das K, Mondol SA. 2020. Intragenesis as a sustainable crop improvement method: a review. International Journal of Current Microbiology and Applied Sciences. 9:773–782. doi:10.20546/ijcmas.2020.904.092.
  • Barrell PJ, Jacobs JME, Baldwin SJ, Conner AJ. 2010. Intragenic vectors for plant transformation within gene pools. CABI Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 5(010):18pp. doi:10.1079/PAVSNNR20205010.
  • Bashaw EC. 1980. Hybridization of crop plants. In: Fehr WR, Hadley HH, editors. Hybridization of crop plants. Chapter 3. ASA, CSSA and SSSA Books; p. 45–63. doi:10.2135/1980.hybridizationofcrops.c3.
  • Basso MF, Arraes FB, Grossi-de-Sa M, Moreira VJ, Alves-Ferreira M, Grossi-de-Sa MF. 2020. Insights into genetic and molecular elements for transgenic crop development. Frontiers in Plant Science. 11:Article 509. doi:10.3389/fpls.2020.00509.
  • Bateson W, Mendel G. 2013. Mendel's principles of heredity. Courier Corporation.
  • Baulcombe D, Dunwell J, Jones J, Pickett J, Puigdomenech P. 2014. GM Science update: a report to the Council for Science and Technology; [accessed 12 January 2023]. https://centaur.reading.ac.uk/36228/1/GM%20Science%20Update%20-%20Report%20to%20CST%20110314.pdf.
  • Bell GD, Kane NC, Rieseberg LH, Adams KL. 2013. RNA-seq analysis of allele-specific expression, hybrid effects, and regulatory divergence in hybrids compared with their parents from natural populations. Genome Biology and Evolution. 5:1309–1323. doi:10.1093/gbe/evt072.
  • Bezie Y, Tilahun T, Atnaf M, Taye M. 2021. The potential applications of site-directed mutagenesis for crop improvement: a review. Journal of Crop Science and Biotechnology. 24:229–244. doi:10.1007/s12892-020-00080-3.
  • Bibikova M, Beumer K, Trautman JK, Carroll D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science. 300:764–764. doi:10.1126/science.1079512.
  • Bibikova M, Golic M, Golic KG, Carroll D. 2002. Targeted chromosomal cleavage and mutagenesis in drosophila using zinc-finger nucleases. Genetics. 161:1169–1175. doi:10.1093/genetics/161.3.1169.
  • Biospace. 2023. Gene editing market size to reach USD 18.50 billion in 2028 | Industry trend – extensive use of gene editing in development of personalized medicine; [accessed 25 February 2023]. https://www.biospace.com/article/gene-editing-market-size-to-reach-usd-18-50-billion-in-2028-industry-trend-extensive-use-of-gene-editing-in-development-of-personalized-medicine/.
  • Bogdanove AJ, Schornack S, Lahaye T. 2010. TAL effectors: finding plant genes for disease and defense. Current Opinion in Plant Biology. 13:394–401. doi:10.1016/j.pbi.2010.04.010.
  • Bonny S. 2008. Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. A review. Agronomy for Sustainable Development. 28:21–32. doi:10.1051/agro:2007044.
  • Bonny S. 2011. Herbicide-tolerant transgenic soybean over 15 years of cultivation: pesticide use, weed resistance, and some economic issues. The case of the USA. Sustainability. 3:1302–1322. doi:10.3390/su3091302.
  • Bowerman AF, Byrt CS, Roy SJ, Whitney SM, Mortimer JC, Ankeny RA, Gilliham M, Zhang D, Millar AA, Rebetzke GJ, Pogson BJ. 2023. Potential abiotic stress targets for modern genetic manipulation. The Plant Cell. 35:139–161. doi:10.1093/plcell/koac327.
  • Bowley SR, Taylor NL. 1987. Introgressive hybridization. In: Christie BR, editor. CRC handbook of plant science in agriculture. Vol. 1. Boca Raton (FL): CRC Press; p. 23–59.
  • Brandle JE, McVetty PBE. 1989. Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines. Crop Science. 29:1191–1194. doi:10.2135/cropsci1989.0011183X002900050020x.
  • Breseghello F, Coelho ASG. 2013. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry. 61:8277–8286. doi:10.1021/jf305531j.
  • Bruce DM. 2017. Genome editing: does it move the goalposts on the GM playing field? In: San-Epifanio LE, editor. Towards a new regulatory framework for GM crops in the European union: scientific, ethical, social and legal issues and the challenges ahead. Chapter 7. Wageningen, The Netherlands: Wageningen Academic Publishers; p. 123–129.
  • Brune P, Chakravarthy S, Graser G, Mathesius CA, McClain S, Petrick JS, Sauve-Ciencewicki A, Schafer B, Silvanovich A, Brink K, Burgin K, et al. 2021. Core and supplementary studies to assess the safety of genetically modified (GM) plants used for food and feed. Journal of Regulatory Science. 9:45–60. doi:10.21423/jrs-v09i1brune.
  • Buchholzer M, Frommer WB. 2023. An increasing number of countries regulate genome editing in crops. New Phytologist. 237:12–15. doi:10.1111/nph.18333.
  • Budhlakoti N, Kushwaha AK, Rai A, Chaturvedi KK, Kumar A, Pradhan AK, Kumar U, Kumar RR, Juliana P, Mishra DC, Kumar S. 2022. Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Frontiers in Genetics. 13:Article 832153. doi:10.3389/fgene.2022.832153
  • Cabrera-Ponce JL, Barraza A, Alvarez-Venegas R. 2022. Cisgenic crops: major strategies to create cisgenic plants based on genome editing. In: Chaurasia A, Kole C, editors. Cisgenic crops: potential and prospects. concepts and strategies in plant sciences. Cham: Springer; p. 213–235. doi:10.1007/978-3-031-06628-3_11
  • Calyxt. 2019. First commercial sale of Calyxt high oleic soybean oil on the U.S. market. Press Release; [accessed 19 January 2023]. https://calyxt.com/wp-content/uploads/2019/02/20190226_PR-Calyno-Commercialization.pdf.
  • Caradus JR. 2022. Ergot alkaloids in New Zealand pastures and their impact. New Zealand Journal of Agricultural Research. 65:1–41. doi:10.1080/00288233.2020.1785514
  • Cardi T, Neal Stewart C. 2016. Progress of targeted genome modification approaches in higher plants. Plant Cell Reports. 35:1401–1416. doi:10.1007/s00299-016-1975-1.
  • Cartagena Protocol. 2000. Cartagena protocol on biosafety to the convention on biological diversity; [accessed 1 January 2023]. https://www.cbd.int/doc/legal/cartagena-protocol-en.pdf.
  • Carzoli AK, Aboobucker SI, Sandall LL, Lübberstedt TT, Suza WP. 2018. Risks and opportunities of GM crops: Bt maize example. Global Food Security. 19:84–91. doi:10.1016/j.gfs.2018.10.004.
  • Casañas F, Simó J, Casals J, Prohens J. 2017. Toward an evolved concept of landrace. Frontiers in Plant Science. 08:Article 145. doi:10.3389/fpls.2017.00145.
  • CFIA. 2016. Canadian Food Inspection Agency. Regulating agricultural biotechnology in Canada: an overview; [accessed 28 December 2022]. https://inspection.canada.ca/plant-varieties/plants-with-novel-traits/general-public/regulating-agricultural-biotechnology/eng/1338187581090/1338188593891.
  • Chahota RK, Kishore N, Dhiman KC, Sharma TR, Sharma SK. 2007. Predicting transgressive segregants in early generation using single seed descent method-derived micro-macrosperma genepool of lentil (lens culinaris medikus). Euphytica. 156:305–310. doi:10.1007/s10681-007-9359-9.
  • Chakwizira E, Maley S, Dumbleton A. 2021. Water use efficiency of raphanobrassica and forage rape. Agronomy Journal of New Zealand. 51:35–46.
  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology. 17:1140–1153. doi:10.1111/mpp.12375.
  • Char SN, Unger-Wallace E, Frame B, Briggs SA, Main M, Spalding MH, Vollbrecht E, Wang K, Yang B. 2015. Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnology Journal. 13:1002–1010. doi:10.1111/pbi.12344.
  • Chawla R, Shakya R, Rommens CM. 2012. Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotechnology Journal. 10:913–924. doi:10.1111/j.1467-7652.2012.00720.x.
  • Chen L, Liu Y-G. 2014. Male sterility and fertility restoration in crops. Annual Review of Plant Biology. 65:579–606. doi:10.1146/annurev-arplant-050213-040119.
  • Clancy KA. 2016. The politics of genetically modified organisms in the United States and Europe. Basingstoke, UK and New York: Palgrave Macmillan published by Springer International, Switzerland. doi: 10.1007/978-3-319-33984-9
  • Clapp J, Ruder S-L. 2020. Precision technologies for agriculture: digital farming, gene-edited crops, and the politics of sustainability. Global Environmental Politics. 20:49–69. doi:10.1162/glep_a_00566.
  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A, Coffman A. 2016. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal. 14:169–176. doi:10.1111/pbi.12370.
  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica. 142:169–196. doi:10.1007/s10681-005-1681-5.
  • Collard BCY, Mackill DJ. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences. 363:557–572. doi:10.1098/rstb.2007.2170.
  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819–823. https://www.science.org/doi/abs/10.1126science.1231143.
  • Conko G. 2003. Safety, risk and the precautionary principle: rethinking precautionary approaches to the regulation of transgenic plants. Transgenic Research. 12:639–647. doi:10.1023/B:TRAG.0000005157.45046.8e.
  • Conner AJ, Barrell PJ, Baldwin SJ, Lokerse AS, Cooper PA, Erasmuson AK, Nap JP, Jacobs JME. 2007. Intragenic vectors for gene transfer without foreign DNA. Euphytica. 154:341–353. doi:10.1007/s10681-006-9316-z.
  • Cook G, Robbins PT, Pieri E. 2006. “Words of mass destruction”: British newspaper coverage of the genetically modified food debate, expert and non-expert reactions. Public Understanding of Science. 15:5–29. doi:10.1177/0963662506058756.
  • Crossa J, Pérez P, de los Campos G, Mahuku G, Dreisigacker S, Magorokosho C. 2011. Genomic selection and prediction in plant breeding. Journal of Crop Improvement. 25:239–261. doi:10.1080/15427528.2011.558767.
  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquı´n D, de Los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S. 2017. Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science. 22:961–975. doi:10.1016/j.tplants.2017.08.011.
  • Cunningham FJ, Goh NS, Demirer GS, Matos JL. 2018. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology. 36:882–897. doi:10.1016/j.tibtech.2018.03.009.
  • Curry HA. 2022. Hybrid seeds in history and historiography. Isis. 113:610–617. doi:10.1086/721075.
  • Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, Čermák T, Starker C, Voytas DF, Eamens AL, Stupar RM. 2018. CRISPR/cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of glycine max and medicago truncatula. Plant Biotechnology Journal. 16:1125–1137. doi:10.1111/pbi.12857.
  • Dandekar AM, Jacobson A, Ibáñez AM, Gouran H, Dolan DL, Agüero CB, Sl U, Just R, Zaini PA. 2019. Trans-graft protection against Pierce’s disease mediated by transgenic grapevine rootstocks. Frontiers in Plant Science. 10:Article 84. https://www.frontiersin.org/articles/10.3389fpls.2019.00084.
  • Das MK, Dai HK. 2007. A survey of DNA motif finding algorithms. BMC Bioinformatics. 8(7):Article S21. doi:10.1186/1471-2105-8-S7-S21.
  • DeFrancesco L. 2013. How safe does transgenic food need to be? Nature Biotechnology. 31:794–802. doi:10.1038/nbt.2686.
  • Delaney B, Goodman RE, Ladics GS. 2018. Food and feed safety of genetically engineered food crops. Toxicological Sciences. 162:361–371. doi:10.1093/toxsci/kfx249.
  • De Langhe E, Hřibová E, Carpentier S, Doležel J, Swennen R. 2010. Did backcrossing contribute to the origin of hybrid edible bananas? Annals of Botany. 106:849–857. doi:10.1093/aob/mcq187.
  • Desta ZA, Ortiz R. 2014. Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science. 19:592–601. doi:10.1016/j.tplants.2014.05.006.
  • De Thomazella DPT, Seong K, Mackelprang R, Dahlbeck D, Geng Y, Gill US, Qia T, Pham J, Giuseppe P, Lee CT, et al. 2021. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences. 118: Article e2026152118. doi:10.1073/pnas.2026152118.
  • de Vetten N, Wolters A, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R. 2003. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nature Biotechnology. 21:439–442.
  • Dhekney SA, Li ZT, Gray DJ. 2011. Grapevines engineered to express cisgenic vitis vinifera thaumatin-like protein exhibit fungal disease resistance. Vitro Cellular & Developmental Biology - Plant. 47:458–466. doi:10.1007/s11627-011-9358-3.
  • Dickert TE, Tracy WF. 2002. Heterosis for flowering time and agronomic traits among early open-pollinated sweet corn cultivars. Journal of the American Society for Horticultural Science. 127:793–797. https://journals.ashs.org/jashs/view/journals/jashs/127/5/article-p793.xml.
  • Dona A, Arvanitoyannis IS. 2009. Health risks of genetically modified foods. Critical Reviews in Food Science and Nutrition. 49:164–175. doi:10.1080/10408390701855993.
  • Dong C, Beetham P, Vincent K, Sharp P. 2006. Oligonucleotide-directed gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Reports. 25:457–465. doi:10.1007/s00299-005-0098-x.
  • Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science. 346:Article 1258096. https://www.science.org/doi/10.1126science.1258096
  • Doudna JA, Sternberg SH. 2017. A crack in creation: gene editing and the unthinkable power to control evolution. HarperCollins. https://books.google.com/books/about/A_Crack_In_Creation.html?hl = de&id = F8WlDAAAQBAJ.
  • Drew RA, Magdalita PM, O'Brien CM. 1998. Development of Carica interspecific hybrids. Acta Horticulturae. 2(461):285–292. doi:10.17660/ActaHortic.1998.461.31.
  • Duan YB, Li J, Qin RY, Xu RF, Li H, Yang YC, Ma H, Li L, Wei PC, Yang JB. 2016. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Molecular Biology. 90:49–62. doi:10.1007/s11103-015-0393-z.
  • Dudley JW, Moll RH. 1969. Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Science. 9:257–262. doi:10.2135/cropsci1969.0011183X000900030001x.
  • Dumbleton A, Foley F, Westwood C, Box G. 2022. The development of Pallaton raphanobrassica for New Zealand farming systems. Journal of New Zealand Grasslands. 83:107–114. doi:10.33584/jnzg.2021.83.3505.
  • Duvick DN. 1999. ASA, CSSA, and SSSA books. In: Coors JG, Pandey S, editors. Genetics and exploitation of heterosis in crops. Chapter 27. p. 295–304. doi:10.2134/1999.geneticsandexploitation.c27
  • Eckerstorfer MF, Dolezel M, Heissenberger A, Miklau M, Reichenbecher W, Steinbrecher RA, Waßmann F. 2019. An EU perspective on biosafety considerations for plants developed by genome editing and other new genetic modification techniques (nGMs). Frontiers in Bioengineering and Biotechnology. 7:Article 31.10.3389/fbioe.2019.00031.
  • Edwards S. 2017. Research into genetically modified organisms in New Zealand: an examination of a sociotechnical controversy. Case Studies in the Environment. 1:1–8.
  • EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms), Naegeli H, Bresson J-L, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, et al. 2020. Applicability of the EFSA opinion on site-directed nucleases type 3 for the safety assessment of plants developed using site-directed nucleases type 1 and 2 and oligonucleotide-directed mutagenesis. EFSA Journal. 18(6299):14. doi:10.2903/j.efsa.2020.6299.
  • Eichelbaum T, Allan J, Fleming J, Randerson R. 2001. Report of the Royal Commission on Genetic Modification. Wellington, New Zealand. [accessed 1 January 2023]. https://environment.govt.nz/assets/Publications/Files/Royal-Commission-on-GM-in-NZ-Final.pdf.
  • Erdmann RM, Picard CL. 2020. RNA-directed DNA methylation. PLOS Genetics. 16:Article e1009034. doi:10.1371/journal.pgen.1009034.
  • Eş I, Gavahian M, Marti-Quijal FJ, Lorenzo JM, Khaneghah AM, Tsatsanis C, Kampranis SC, Barba FJ. 2019. The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: current status, future perspectives, and associated challenges. Biotechnology Advances. 37:410–421. doi:10.1016/j.biotechadv.2019.02.006.
  • ETC Group. 2013. Putting the cartel before the horse … and farm, seeds, soil, peasants, etc. who will control agricultural inputs, 2013? Communiqué No. 111. p. 40. https://www.etcgroup.org/sites/www.etcgroup.org/files/CartelBeforeHorse11Sep2013.pdf.
  • EU Directive. 2001. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC; [accessed 1 January 2023]. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri = CONSLEG:2001L0018:20080321:EN:PDF.
  • European Commission. 2000. Communication from the Commission on the Pre-Cautionary Principle: COM (2000) 1 final; [accessed 2 January 2023]. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri = CELEX%3A52000DC0001.
  • European Commission. 2021. Directorate-General for research and innovation. Ethics of genome editing. European group on ethics in science and new technologies. Opinion. 32:112. https://data.europa.eu/doi/10.2777659034.
  • European Political Strategy Centre. 2016. Towards an innovation principle endorsed by better regulation (EPSC Strategic Notes No. Issue 14); [accessed 2 January 2023]. https://wayback.archive-it.org/12090/20191129102319/https://ec.europa.eu/epsc/publications/strategic-notes/towards-innovation-principle-endorsed-better-regulation_en.
  • eusage. 2023. European sustainable agriculture through genome editing. The European Community study on new genomic techniques; [accessed 11 January 2023]. https://www.eu-sage.eu/.
  • Ewen SW, Pusztai A. 1999. Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. The Lancet. 354:1353–1354. doi:10.1016/S0140-6736(98)05860-7.
  • Falconer D. 1960. Introduction to quantitative genetics. Edinburgh: Oliver and Boyd.
  • FAO. 2022. Gene editing and agrifood systems. Food and Agriculture Organization of the United Nations, Rome. doi:10.4060/cc3579en
  • Farhat S, Jain N, Singh N, Sreevathsa R, Das PK, Rai R, Yadav S, Kumar P, Sarkar A, Jain A. 2019. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Seminars in Cell & Developmental Biology. 96:91–99. doi:10.1016/j.semcdb.2019.05.003.
  • FDA. 2020. US Food and Drug Administration. Food from new plant varieties; [accessed 28 December 2022]. https://www.fda.gov/food/food-ingredients-packaging/food-new-plant-varieties.
  • Fisher RA. 1925. Statistical methods for research workers. Edinburgh: Oliver and Boyd. 239p.
  • Fister AS, Landherr L, Maximova SN, Guiltinan MJ. 2018. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in theobroma cacao. Frontiers in Plant Science. 9:Article 268. doi:10.3389/fpls.2018.00268.
  • Flachowsky H, Hanke M-V, Piel A, Strauss SH, Fladung M. 2009. A review on transgenic approaches to accelerate breeding of woody plants. Plant Breeding. 128:217–226. http://onlinelibrary.wiley.com/doi/10.1111j.1439-0523.2008.01591.x/pdf.
  • Frankel R. 1983. Heterosis. In: Reappraisal of theory and practice. Berlin: Springer-Verlag.
  • Fraser PD, Enfissi EMA, Bramley PM. 2009. Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Archives of Biochemistry and Biophysics. 483:196–204. doi:10.1016/j.abb.2008.10.009.
  • Freddy BO, Aimé DN, Jacques LNB, Sébastien LN. 2022. Cisgenesis and plant breeding: a review. In: Chaurasia A, Kole C, editors. Cisgenic crops: potential and prospects. Concepts and strategies in plant sciences. Cham: Springer; p. 79–87. doi:10.1007/978-3-031-06628-3_5.
  • Fritsche S, Poovaiah C, MacRae E, Thorlby G. 2018. A New Zealand perspective on the application and regulation of gene editing. Frontiers in Plant Science. 9:Article 1323. https://www.frontiersin.org/articles/10.3389fpls.2018.01323.
  • FSANZ. 2021. Food Standards Australia New Zealand. Genetically modified foods; [accessed 28 December 2022]. https://www.foodstandards.govt.nz/consumer/gmfood/Pages/default.aspx.
  • FSANZ. 2022. Food Standards Australia New Zealand. GM Foods in Australia and New Zealand; [accessed 28 December 2022]. https://www.foodstandards.gov.au/consumer/gmfood/Documents/GM%20Foods%20in%20Australia%20and%20New%20Zealand.pdf.
  • Fujimoto R, Uezono K, Ishikura S, Osabe K, Peacock WJ, Dennis ES. 2018. Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breeding Science. 68:145–158. doi:10.1270/jsbbs.17155.
  • Gadaleta A, Giancaspro A, Blechl AE, Blanco A. 2008. A transgenic durum wheat line that is free of marker genes and expresses 1DY10. Journal of Cereal Science. 48:439–445. doi:10.1016/j.jcs.2007.11.005.
  • Gaharwar US, Verma A, Singh R, Prasad T, Rajamani P. 2021. Health risks and environmental concerns of GM crop adoption. In: Singh P, Borthakur A, Singh AA, Kumar A, Singh KK, editors. Policy issues in genetically modified crops. Academic Press; p. 371–400. doi:10.1016/B978-0-12-820780-2.00017-0
  • Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L. 2020. Superior field performance of waxy corn engineered using CRISPR–Cas9. Nature Biotechnology. 38:579–581. doi:10.1038/s41587-020-0444-0.
  • Gayon J, Zallen DT. 1998. The role of the vilmorin company in the promotion and diffusion of the experimental science of heredity in France, 1840-1920. Journal of the History of Biology. 31:241–262. http://www.jstor.org/stable/4331479.
  • GDM Seeds. 2022. The Colombian government approves soy edited by GDM with low presence of sugars; [accessed 19 January 2023]. https://www.gdmseeds.com/wp-content/uploads/2023/01/ING-Soja-Colombia.pdf.
  • Gelvin SB. 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology. 51:223–256.
  • George AL, Mayden RL. 2005. Species concepts and the Endangered Species Act: how a valid biological definition of species enhances the legal protection of biodiversity. Natural Resources Journal. 45:369–407. http://www.jstor.org/stable/24888981.
  • Germanà MA. 2011. Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture (PCTOC). 104:283–300. doi:10.1007/s11240-010-9852-z.
  • Ghose K, Yuan N, Dampanaboina L, Mendu V. 2022. Cisgenesis in the era of genome editing and modern plant biotechnology. In: Chaurasia A, Kole C, editors. Cisgenic crops: potential and prospects. concepts and strategies in plant sciences. Cham: Springer; p. 257–279. doi:10.1007/978-3-031-06628-3_13
  • Glenn KC, Alsop B, Bell E, Goley M, Jenkinson J, Liu B, Martin C, Parrott W, Souder C, Sparks O, et al. 2017. Bringing new plant varieties to market: plant breeding and selection practices advance beneficial characteristics while minimizing unintended changes. Crop Science. 57:2906–2921. doi:10.2135/cropsci2017.03.0199.
  • Gocal G. 2015. Non-transgenic trait development in crop plants using oligo-directed mutagenesis: cibus’ rapid trait development system. In: Eaglesham A, Hardy RW, editors. NABC report 26. New DNA-editing approaches: methods, applications and policy for agriculture. Ithaca (NY): North American Agricultural Biotechnology Council; p. 97–105.
  • Gocal GFW, Schopke C, Beetham PR. 2015. Oligo-mediated targeting gene editing. In: Zhang F, Puchta H, Thompson JG, editors. Advances in new technology for targeted modification of plant genomes. New York, NY: Springer; p. 73–89.
  • Gomez MA, Lin DZ, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington J, Staskawicz B, Bart R. 2019. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal. 17:421–434. doi:10.1111/pbi.12987.
  • Gottesfeld JM, Neely L, Trauger JW, Baird EE, Dervan PB. 1997. Regulation of gene expression by small molecules. Nature. 387:202–205. doi:10.1038/387202a0.
  • Grant PR. 1972. Convergent and divergent character displacement. Biological Journal of the Linnean Society. 4:39–68. doi:10.1111/j.1095-8312.1972.tb00690.x.
  • Grattapaglia D. 2022. Twelve years into genomic selection in forest trees: climbing the slope of enlightenment of marker assisted tree breeding. Forests. 13:Article 1554. doi:10.3390/f13101554.
  • Gregorowius D, Lindemann-Matthies P, Huppenbauer M. 2012. Ethical discourse on the use of genetically modified crops: a review of academic publications in the fields of ecology and environmental ethics. Journal of Agricultural and Environmental Ethics. 25:265–293. doi:10.1007/s10806-011-9330-6.
  • Grewal D, Manito C, Bartolome V. 2011. Doubled haploids generated through anther culture from crosses of elite indica and japonica cultivars and/or lines of rice: large-scale production, agronomic performance, and molecular characterization. Crop Science. 51:2544. doi:10.2135/cropsci2011.04.0236.
  • Gross BL, Henk AD, Forsline PL, Richards CM, Volk GM. 2012. Identification of interspecific hybrids among domesticated apple and its wild relatives. Tree Genetics & Genomes. 8:1223–1235. doi:10.1007/s11295-012-0509-4.
  • Gupta PK, Kumar J, Mir RR, Kumar A. 2010. Marker-assisted selection as a component of conventional plant breeding. Plant Breeding Reviews. 33:145–217.
  • Hake S, Ross-Ibarra J. 2015. The natural history of model organisms: genetic, evolutionary and plant breeding insights from the domestication of maize. eLife. 4:Article e05861. doi:10.7554/eLife.05861.
  • Hallauer AR. 2011. Evolution of plant breeding. Crop Breeding and Applied Biotechnology. 11:197–206. doi:10.1590/S1984-70332011000300001.
  • Han J, Guo B, Guo Y, Zhang B, Wang X, Qiu LJ. 2019. Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Frontiers in Plant Science. 10:Article 1446. doi:10.3389/fpls.2019.01446.
  • Hanna WW, Bashaw EC. 1987. Apomixis: its identification and use in plant breeding. Crop Science. 27:1136–1139. doi:10.2135/cropsci1987.0011183X002700060010x.
  • Hartzell-Nichols L. 2013. From ‘the’ precautionary principle to precautionary principles. Ethics, Policy & Environment. 16:308–320. doi:10.1080/21550085.2013.844569.
  • Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA. 2021. Lipase from rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production. Journal of Genetic Engineering and Biotechnology. 19:1–26. doi:10.1186/s43141-020-00094-y.
  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F. 2014. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal. 12:934–940. doi:10.1111/pbi.12201.
  • Haverkort AJ, Struik PC, Visser RGF, Jacobsen E. 2009. Applied biotechnology to combat late blight in potato caused by phytophthora infestans. Potato Research. 52:249–264.
  • Hayes AW. 2005. The precautionary principle. Arhiv za Higijenu Rada i Toksikologiju. 56:161–166. [accessed 26 February 2023]. https://core.ac.uk/download/pdf/14375077.pdf.
  • Hefferon K. 2022. Cis genesis of crops. In: Chaurasia A, Kole C, editors. Cisgenic crops: potential and prospects. concepts and strategies in plant sciences. Cham: Springer; p. 67–78. doi:10.1007/978-3-031-06628-3_4
  • Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME. 2010. Plant breeding with genomic selection: gain per unit time and cost. Crop Science. 50:1681–1690. doi:10.2135/cropsci2009.11.0662.
  • Heffner EL, Sorrells ME, Jannink JL. 2009. Genomic selection for crop improvement. Crop Science. 49:1–12. doi:10.2135/cropsci2008.08.0512.
  • Henikoff S, Till BJ, Comai L. 2004. TILLING. traditional mutagenesis meets functional genomics. Plant Physiology. 135:630–636. doi:10.1104/pp.104.041061.
  • Herman RA, Gaffney J, Storer NP. 2020. Enlightened oversight of genetically engineered crops for the next generation. Agricultural & Environmental Letters. 5:e20004. doi:10.1002/ael2.20004.
  • Herman RA, Price WD. 2013. Unintended compositional changes in genetically modified (GM) crops: 20 years of research. Journal of Agricultural and Food Chemistry. 61:11695–11701. doi:10.1021/jf400135r.
  • Herrera-Estrella L, Simpson J, Martínez-Trujillo M. 2004. Transgenic plants. In: Peña L, editor. Transgenic plants: methods and protocols. Methods in molecular biology™. Humana Press; 286 p. 003–032. doi:10.1385/1-59259-827-7:003
  • Herring R. 2008. Opposition to transgenic technologies: ideology, interests and collective action frames. Nature Reviews Genetics. 9:458–463. doi:10.1038/nrg2338.
  • Heslot N, Jannink J-L, Sorrells ME. 2015. Perspectives for genomic selection applications and research in plants. Crop Science. 55:1–12. doi:10.2135/cropsci2014.03.0249.
  • Hickey LT, Hafeez N, Robinson H, Jackson SA, Leal-Bertioli S, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BB. 2019. Breeding crops to feed 10 billion. Nature Biotechnology. 37:744–754. doi:10.1038/s41587-019-0152-9.
  • Hochholdinger F, Baldauf JA. 2018. Heterosis in plants. Current Biology. 28:R1089–R1092.
  • Holme IB, Dionisio G, Brinch-Pedersen H, Wendt T, Madsen CK, Vincze E, Holm PB. 2012. Cisgenic barley with improved phytase activity. Plant Biotechnology Journal. 10:237–247.
  • Holme IB, Madsen CK, Wendt T, Brinch-Pedersen H. 2020. Horizontal stacking of PAPhy_a cisgenes in barley is a potent strategy for increasing mature grain phytase activity. Frontiers in Plant Science. 11:Article 592139. doi:10.3389/fpls.2020.592139.
  • Holme IB, Wendt T, Holm PB. 2013. Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnology Journal. 11:395–407. doi:10.1111/pbi.12055.
  • Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157:1262–1278. doi:10.1016/j.cell.2014.05.010.
  • Hu J, Chen B, Zhao J, Zhang F, Xie T, Xu K, Gao G, Yan G, Li H, Li L, Ji G, et al. 2022. Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nature Genetics. 54:694–704. doi:10.1038/s41588-022-01055-6.
  • Hu J, Gao C. 2023. CRISPR-edited plants by grafting. Nature Biotechnology. [accessed 12 March 2023]. doi:10.1038/s41587-022-01516-7.
  • Huang C-Y, Jin H. 2022. Coordinated epigenetic regulation in plants: a potent managerial tool to conquer biotic stress. Frontiers in Plant Science. 12: Article 795274. doi:10.3389/fpls.2021.795274.
  • Huang H, Cui T, Zhang L, Yang Q, Yang Y, Xie K, Fan C, Zhou Y. 2020. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in brassica napus. Theoretical and Applied Genetics. 133:2401–2411. doi:10.1007/s00122-020-03607-y.
  • Huidobro C, Fernandez AF, Fraga MF. 2013. Aging epigenetics: causes and consequences. Molecular Aspects of Medicine. 34:765–781. doi:10.1016/j.mam.2012.06.006.
  • IAEA. 2022. The International Atomic Energy Agency (IAEA) Mutant Variety Database; [accessed 29 December 2022]. https://nucleus.iaea.org/sites/mvd/SitePages/Home.aspx#.
  • Ipsos. 2019. Global trust in professions – Who do global citizens trust?; [accessed 30 December 2022]. https://www.ipsos.com/sites/default/files/ct/news/documents/2019-09/global-trust-in-professions-trust-worthiness-index-2019.pdf.
  • Irvine JE. 1999. Saccharum species as horticultural classes. Theoretical and Applied Genetics. 98(2):186–194. doi:10.1007/s001220051057.
  • ISAAA database. 2023. GM Approval Database. https://www.isaaa.org/gmapprovaldatabase/.
  • Jacobsen SE, Sørensen M, Pedersen SM, Weiner J. 2013. Feeding the world: genetically modified crops versus agricultural biodiversity. Agronomy for Sustainable Development. 33:651–662. doi:10.1007/s13593-013-0138-9.
  • Jankowicz-Cieslak J, Till BJ. 2015. Forward and reverse genetics in crop breeding. In: Al-Khayri J, Jain S, Johnson D, editors. Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Switzerland: Springer International Publishing; p. 215–240. doi:10.1007/978-3-319-22521-0_8.
  • Jiang GL. 2013. Molecular markers and marker-assisted breeding in plants. In: Andersen SB, editor. Plant breeding from laboratories to fields. Rijeka (Croatia): InTechOpen; Chapter 3, p. 45–83.
  • Jin S, Clark B, Kuznesof S, Lin X, Frewer LJ. 2019. Synthetic biology applied in the agrifood sector: public perceptions, attitudes and implications for future studies. Trends in Food Science & Technology. 91:454–466. doi:10.1016/j.tifs.2019.07.025.
  • Jo KR, Kim CJ, Kim SJ, Kim TY, Bergervoet M, Jongsma MA, Visser RG, Jacobsen E, Vossen JH. 2014. Development of late blight resistant potatoes by cisgene stacking. BMC Biotechnology. 14: Article 50. doi:10.1186/1472-6750-14-50.
  • Jones MGK, Fosu-Nyarko J, Iqbal S, Adeel M, Romero-Aldemita R, Arujanan M, Kasai M, Wei X, Prasetya B, Nugroho S, et al. 2022. Enabling trade in gene-edited produce in Asia and australasia: the developing regulatory landscape and future perspectives. Plants. 11. doi:10.3390/plants11192538
  • Jorasch P. 2020. Potential, challenges, and threats for the application of new breeding techniques by the private plant breeding sector in the EU. Frontiers in Plant Science. 11:Article 582011. doi:10.3389/fpls.2020.582011.
  • Jouanin A, Boyd L, Visser RG, Smulders MJ. 2018. Development of wheat with hypoimmunogenic gluten obstructed by the gene editing policy in Europe. Frontiers in Plant Science. 9:Article 1523. doi:10.3389/fpls.2018.01523.
  • Jouanin A, Gilissen LJ, Schaart JG, Leigh FJ, Cockram J, Wallington EJ, Boyd LA, van den Broeck HC, van der Meer IM, America AH, Visser RG. 2020. CRISPR/cas9 gene editing of gluten in wheat to reduce gluten content and exposure—reviewing methods to screen for coeliac safety. Frontiers in Nutrition. 7:Article 51. doi:10.3389/fnut.2020.00051.
  • Jouanin A, Schaart JG, Boyd LA, Cockram J, Leigh FJ, Bates R, Wallington EJ, Visser RG, Smulders MJ. 2019. Outlook for coeliac disease patients: towards bread wheat with hypoimmunogenic gluten by gene editing of α- and γ-gliadin gene families. BMC Plant Biology. 19:Article 333. doi:10.1186/s12870-019-1889-5.
  • Joung J, Sander J. 2013. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology. 14:49–55. doi:10.1038/nrm3486.
  • Jumbo M, Weldekidan T, Holland JB, Hawk JA. 2011. Comparison of conventional, modified single seed descent, and doubled haploid breeding methods for maize inbred line development using germplasm enhancement of maize breeding crosses. Crop Science. 51:1534–1543. doi:10.2135/cropsci2010.10.0594.
  • Jung JH, Altpeter F. 2016. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Molecular Biology. 92:131–142. doi:10.1007/s11103-016-0499-y.
  • Kabat GC. 2017. Taking distrust of science seriously. EMBO Reports. 18:1052–1055. doi:10.15252/embr.201744294.
  • Kanazawa A, Inaba JI, Shimura H, Otagaki S, Tsukahara S, Matsuzawa A, Bm K, Goto K, Masuta C. 2011. Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. The Plant Journal. 65:156–168. doi:10.1111/j.1365-313X.2010.04401.x.
  • Kankanala P, Nandety RS, Mysore KS. 2019. Genomics of plant disease resistance in legumes. Frontiers in Plant Science. 10:Article 1345. doi:10.3389/fpls.2019.01345.
  • Kannan B, Jung JH, Moxley GW, Lee S-M, Altpeter F. 2018. TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnology Journal. 16:856–866. doi:10.1111/pbi.12833.
  • Kemesyte V, Statkeviciute G, Brazauskas G. 2017. Perennial ryegrass yield performance under abiotic stress. Crop Science. 57:1935–1940. doi:10.2135/cropsci2016.10.0864.
  • Kharkwal MC. 2012. A brief history of plant mutagenesis. In: Shu QY, Forster BP, Nakagawa H, editors. Plant mutation breeding and biotechnology. Wallingford: CABI; p. 21–30.
  • Kim JY, Kim JH, Jang YH, Yu J, Bae S, Kim M-S, Cho Y-G, Jung YJ, Kang KK. 2023. Transcriptome and metabolite profiling of tomato SGR-knockout null lines using the CRISPR/Cas9 system. International Journal of Molecular Sciences. 24:Article 109. doi:10.3390/ijms24010109.
  • Kim Y-J, Zhang D. 2018. Molecular control of male fertility for crop hybrid breeding. Trends in Plant Science. 23:53–65. doi:10.1016/j.tplants.2017.10.001.
  • Kodym A, Afza R. 2003. Physical and chemical mutagenesis. In: Grotewol E, editor. Plant functional genomics. Methods in molecular biology™, vol 236. Totowa, NJ, USA: Humana Press; p. 189–204. doi:10.1385/1-59259-413-1:189.
  • Köferle A, Stricker SH, Beck S. 2015. Brave new epigenomes: the dawn of epigenetic engineering. Genome Medicine. 7:Article 59. doi:10.1186/s13073-015-0185-8.
  • Korban SS. 1986. Interspecific hybridization in Malus. HortScience. 21:41–48. https://journals.ashs.org/hortsci/view/journals/hortsci/21/1/article-p41_b.xml.
  • Kouhen M, García-Caparrós P, Twyman RM, Abdelly C, Mahmoudi H, Schillberg S, Debez A. 2022. Improving environmental stress resilience in crops by genome editing: insights from extremophile plants. Critical Reviews in Biotechnology. [accessed 12 March 2023]. doi:10.1080/07388551.2022.2042481.
  • Koul B. 2022. Cisgenics and crop improvement. In: Koul B, editor. Cisgenics and transgenics. Singapore: Springer; p. 107–129. doi:10.1007/978-981-19-2119-3_3
  • Kour J, Sangeeta DH, Tomar M, Bala K, Mishra RC. 2022. Genetically modified plant and animal foods. In: Kour J, Sharma V, Khanday I, editors. Genetically modified crops and food security: commercial, ethical and health considerations. Chapter1. Taylor & Francis. doi:10.4324/9781003278566-1.
  • Krishna VV, Qaim M. 2008. Consumer attitudes toward GM food and pesticide residues in India. Review of Agricultural Economics. 30:233–251. doi:10.1111/j.1467-9353.2008.00402.x.
  • Kuluev BR, Gumerova GR, Mikhaylova EV, Gerashchenkov GA, Rozhnova NA, Vershinina ZR, Khyazev AV, Matniyazov RT, Baymiev A, Baymiev A, Chemeris AV. 2019. Delivery of CRISPR/Cas components into higher plant cells for genome editing. Russian Journal of Plant Physiology. 66:694–706. doi:10.1134/S102144371905011X.
  • Kumar J, Kumar A, Gupta S, Kumar D, DePauw S. 2022. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity. 128:473–496. doi:10.1038/s41437-022-00513-5.
  • Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S. 2020. Genetically modified crops: current status and future prospects. Planta. 251: Article 91. doi:10.1007/s00425-020-03372-8.
  • Kumar S. 2019. Epigenetics and epigenomics for crop improvement: current opinion. Advances in Biotechnology and Microbiology. 14:Article 555879. doi:10.19080/AIBM.2019.14.555879.
  • Kwan BD, Seligmann B, Nguyen TD, Franke J, Dang TT. 2023. Leveraging synthetic biology and metabolic engineering to overcome obstacles in plant pathway elucidation. Current Opinion in Plant Biology. 71: Article 102330. doi:10.1016/j.pbi.2022.102330.
  • Ladics GS. 2019. Assessment of the potential allergenicity of genetically-engineered food crops. Journal of Immunotoxicology. 16:43–53. doi:10.1080/1547691X.2018.1533904.
  • Laird NM, Lange C. 2011. Principles of inheritance: Mendel’s laws and genetic models. In: The fundamentals of modern statistical genetics. New York: Statistics for Biology and Health. Springer; p. 15–30. doi:10.1007/978-1-4419-7338-2_2
  • Lamichhane S, Thapa S. 2022. Advances from conventional to modern plant breeding methodologies. Plant Breeding and Biotechnology. 10:1–14. doi:10.9787/PBB.2022.10.1.1.
  • Lassoued R, Macall DM, Smyth SJ, Phillips PW, Hesseln H. 2020. How should we regulate products of new breeding techniques? Opinion of surveyed experts in plant biotechnology. Biotechnology Reports. 26: Article e00460. doi:10.1016/j.btre.2020.e00460.
  • Laughnan JR, Gabay-Laughnan S. 1983. Cytoplasmic male sterility in maize. Annual Review of Genetics. 17:27–48.
  • Layne RE, Sherman WB. 1986. Interspecific hybridization of Prunus. HortScience. 21:48–51. https://journals.ashs.org/hortsci/view/journals/hortsci/21/1/article-p48.xml.
  • Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn A, Zarecor S, Lawrence-Dil CJ, Joung JK. 2019a. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal. 17:362–372. doi:10.1111/pbi.12982.
  • Lee M. 2006. The phenotypic and genotypic eras of plant breeding. In: Lamkey KR, Lee M, editors. Plant breeding: the Arnel R. Hallauer International Symposium. Ames: Blackwell Publishing; p. 213–218.
  • Lee MA, Howard-Andrews V, Chester M. 2019b. Resistance of multiple diploid and tetraploid perennial ryegrass (lolium perenne L.) varieties to three projected drought scenarios for the UK in 2080. Agronomy. 9: Article 159. doi:10.3390/agronomy9030159.
  • Lelieveld H, Andersen V. 2020. Debunking misinformation about food. Scientific Bulletin. Series F. Biotechnologies. 23:237–247.
  • Lema M. 2021. Breaking barriers with breeding: a primer on new breeding innovations for food security. ISAAA Brief. 56:23–31.
  • Lenaerts B, Collard BCY, Demont M. 2019. Review: improving global food security through accelerated plant breeding. Plant Science. 278: Article 110207. doi:10.1016/j.plantsci.2019.110207.
  • Levings CS. 3rd. 1993. Thoughts on cytoplasmic male sterility in cms-T maize. The Plant Cell. 5:1285–1290. doi:10.2307/3869781.
  • Lewontin RC. 2000. The maturing of capitalist agriculture: farmer as proletarian. In: Magdoff F, Foster JB, Buttel FH, editors. Hungry for profit: the agribusiness threat to farmers, food, and the environment. New York: Publisher: Monthly Review Press; p. 93–106. https://books.google.co.nz/books?id = Iu78TKUEPv4C.
  • Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, Angelovici R, Clemente TE, Holding DR. 2018. Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiology. 177:1425–1438. doi:10.1104/pp.18.00200.
  • Li C, Unver T, Zhang B. 2017. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton (gossypium hirsutum L.). Scientific Reports. 7: Article 43902. doi:10.1038/srep43902.
  • Li J, Scarano A, Mora Gonzalez N, D’Orso F, Yue Y, Nemeth K, Saalbach G, Hill L, Oliveira Martins C, Moran R, et al. 2022. Biofortified tomatoes provide a new route to vitamin D sufficiency. Nature Plants. 8:611–616. doi:10.1038/s41477-022-01154-6.
  • Li T, Liu B, Spalding M, Weeks DP, Yang B. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology. 30:390–392. doi:10.1038/nbt.2199.
  • Li Z, Liu Z-B, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Falco CE, Cigan SC, M A. 2015. Cas9-guide RNA directed genome editing in soybean. Plant Physiology. 169:960–970. doi:10.1104/pp.15.00783.
  • Li Z, Moon BP, Xing A, Liu ZB, McCardell RP, Damude HG, Falco SC. 2010. Stacking multiple transgenes at a selected genomic site via repeated recombinase-mediated DNA cassette exchanges. Plant Physiology. 154:622–631. doi:10.1104/pp.110.160093.
  • Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C. 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications. 8: Article 14261. doi:10.1038/ncomms14261.
  • Liu B, Li M, Cheng L, Liang D, Zou Y, Ma F. 2012. Influence of rootstock on antioxidant system in leaves and roots of young apple trees in response to drought stress. Plant Growth Regulation. 67:247–256. doi:10.1007/s10725-012-9683-5.
  • Liu D. 2009. Design of gene constructs for transgenic maize. In: Scott MP, editor. Transgenic maize. Methods in molecular biology™, vol 526. Totowa, NJ: Humana Press; p. 3–20. doi:10.1007/978-1-59745-494-0_1.
  • Losert D, Maurer HP, Marulanda JJ, Würschum T. 2017. Phenotypic and genotypic analyses of diversity and breeding progress in European triticale (× triticosecale wittmack). Plant Breeding. 136:18–27. doi:10.1111/pbr.12433.
  • Losey JE, Rayor LS, Carter ME. 1999. Transgenic pollen harms monarch larvae. Nature. 399:214. doi:10.1038/20338.
  • Louwaars N. 2019. Food safety and plant breeding - why are there no problems in practice? In: Urazbaeva A, Szajkowska A, Wernaart BFW, Franssens NT, Vaskoska RS, editors. The functional field of food law. Wageningen, The Netherlands: Wageningen Academic Press Publishers; p. 89–101.
  • Lübberstedt T, Frei UK. 2012. Application of doubled haploids for target gene fixation in backcross programmes of maize. Plant Breeding. 131:449–452. doi:10.1111/j.1439-0523.2011.01948.x.
  • Lucht JM. 2015. Public acceptance of plant biotechnology and GM crops. Viruses. 7:4254–4281. doi:10.3390/v7082819.
  • Lusser M, Davies HV. 2013. Comparative regulatory approaches for groups of new plant breeding techniques. New Biotechnology. 30:437–446. doi:10.1016/j.nbt.2013.02.004.
  • Lynas M, Adams J, Conrow J. 2022. Misinformation in the media: global coverage of GMOs 2019-2021. GM Crops & Food. [accessed 12 March 2023]. doi:10.1080/21645698.2022.2140568.
  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, et al. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant. 8:1274–1284. doi:10.1016/j.molp.2015.04.007.
  • Mabry ME, Turner-Hissong SD, Gallagher EY, McAlvay AC, An H, Edger PP, Moore JD, Pink DAC, Teakle GR, Stevens CJ, et al. 2021. The evolutionary history of wild, domesticated, and feral Brassica oleracea (Brassicaceae). Molecular Biology and Evolution. 38:4419–4434. doi:10.1093/molbev/msab183.
  • MacFie H. 2007. Consumer-led food product development. Woodhead: Woodhead Publishing Ltd, Cambridge.
  • Maghari BM, Ardekani AM. 2011. Genetically modified foods and social concerns. Avicenna Journal of Medical Biotechnology. 3:109–117.
  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala Kanchiswamy C. 2016. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science. 7: Article 1904. doi:10.3389/fpls.2016.01904.
  • Mao Y, Botella JR, Liu Y, Zhu J-K. 2019. Gene editing in plants: progress and challenges. National Science Review. 6:421–437. doi:10.1093/nsr/nwz005.
  • Marchant GE, Stevens YA. 2015. A new window of opportunity to reject process-based biotechnology regulation. GM Crops & Food. 6:233–242.
  • Margolis H. 1997. Dealing with isk: why the public and the experts disagree on environmental issues. United Kingdom: University of Chicago Press.
  • Margueron R, Reinberg D. 2010. Chromatin structure and the inheritance of epigenetic information. Nature Reviews Genetics. 11:285–296. doi:10.1038/nrg2752.
  • Markets and Markets. 2022. Genome editing market size. Market Research Report Code BT3380, published November 2021; [accessed 1 January 2023]. https://www.marketsandmarkets.com/Market-Reports/genome-editing-engineering-market-231037000.html.
  • Mason AS, Batley J. 2015. Creating new interspecific hybrid and polyploid crops. Trends in Biotechnology. 33:436–441. doi:10.1016/j.tibtech.2015.06.004.
  • Massel K, Hintzsche J, Restall J, Kerr ED, Schulz BL, Godwin ID. 2023. CRISPR-knockout of β-kafirin in sorghum does not recapitulate the grain quality of natural mutants. Planta. 257:8. doi:10.1007/s00425-022-04038-3.
  • Mather K. 1955. The genetical basis of heterosis. Proceedings of the Royal Society of London. Series B-Biological Sciences. 144:143–150.
  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences. 99:6080–6084. doi:10.1073/pnas.052125199.
  • Mayo O. 1987. The theory of plant breeding. Oxford: Clarendon Press.
  • Mba C. 2013. Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy. 3:200–231. doi:10.3390/agronomy3010200.
  • Mba C, Afza R, Bado S, Jain SM. 2010. Induced mutagenesis in plants using physical and chemical agents. In: Davey MR, Anthony P, editors. Plant cell culture: essential methods. Chichester, UK: Wiley-Blackwell; p. 111–130.
  • McCallum CM, Comai L, Greene EA, Henikoff S. 2000. Targeted screening for induced mutations. Nature Biotechnology. 18:455–457. doi:10.1038/74542.
  • McGuinness Institute. 2013. An overview of genetic modification in New Zealand 1973–2013: the first forty years. Project 2058; Report 16, September 2013, p. 140; [accessed 1 January 2023] http://www.mcguinnessinstitute.org/project-2058-reports/.
  • McHughen A. 2013. GM crops and foods. GM Crops & Food. 4:172–182. doi:10.4161/gmcr.26532.
  • Menz J, Modrzejewski D, Hartung F, Wilhelm R, Sprink T. 2020. Genome edited crops touch the market: a view on the global development and regulatory environment. Frontiers in Plant Science. 11: Article 586027. doi:10.3389/fpls.2020.586027.
  • Mergoum M, Sapkota S, ElDoliefy AEA, Naraghi SM, Pirseyedi S, Alamri MS, AbuHammad W. 2019. Triticale (x Triticosecale Wittmack) breeding. In: Al-Khayri J, Jain S, Johnson D, editors. Advances in plant breeding strategies: cereals. Cham: Springer; p. 405–451. doi:10.1007/978-3-030-23108-8_11
  • Merrick LF, Herr AW, Sandhu KS, Lozada DN, Carter AH. 2022a. Utilizing genomic selection for wheat population development and improvement. Agronomy. 12: Article 522. doi:10.3390/agronomy12020522.
  • Merrick LF, Herr AW, Sandhu KS, Lozada DN, Carter AH. 2022b. Optimizing plant breeding programs for genomic selection. Agronomy. 12: Article 714. doi:10.3390/agronomy12030714.
  • Meuwissen THE, Hayes BJ, Goddard ME. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157:1819–1829. doi:10.1093/genetics/157.4.1819.
  • Miki B, McHugh S. 2004. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. Journal of Biotechnology. 107:193–232. doi:10.1016/j.jbiotec.2003.10.011.
  • Miles JW. 2007. Apomixis for cultivar development in tropical forage grasses. Crop Science. 47:S-238–S-249. doi:10.2135/cropsci2007.04.0016IPBS.
  • Miroshnichenko D, Timerbaev V, Okuneva A, Klementyeva A, Sidorova T, Pushin A, Dolgov S. 2020. Enhancement of resistance to PVY in intragenic marker-free potato plants by RNAi-mediated silencing of eIF4E translation initiation factors. Plant Cell, Tissue and Organ Culture (PCTOC). 140:691–705. doi:10.1007/s11240-019-01746-9.
  • Mishra R, Rao GJN. 2016. In-vitro androgenesis in rice: advantages, constraints and future prospects. Rice Science. 23:57–68. doi:10.1016/j.rsci.2016.02.001.
  • Modrzejewski D, Hartung F, Sprink T, Krause D, Kohl C, Wilhelm R. 2019. What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environmental Evidence. 8: Article 27. doi:10.1186/s13750-019-0171-5.
  • Mohanta TK, Bashir T, Hashem A, Abd_Allah EF, Bae H. 2017. Genome editing tools in plants. Genes. 8: Article 27. doi:10.3390/genes8120399.
  • Moose SP, Mumm RH. 2008. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology. 147:969–977. doi:10.1104/pp.108.118232.
  • MPI. 2021. Ministry for Primary Industries. Labelling requirements for genetically modified food; [accessed 28 December 2022]. https://www.mpi.govt.nz/food-business/labelling-composition-food-drinks/specific-product-labelling/labelling-requirements-for-genetically-modified-food/.
  • Nadeem MA, Nawaz MA, Shahid MO, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment. 32:261–285. doi:10.1080/13102818.2017.1400401.
  • Nair A, Fischer ARH, Moscatelli S, Socaciu C, Kohl C, Stetkiewicz SS, Menary J, Baekelandt A, Nanda AK, Jorasch P, et al. 2023. European consumer and societal stakeholders’ response to crop improvements and new plant breeding techniques. Food and Energy Security. 12: Article e417. doi:10.1002/fes3.417.
  • Nair RM. 2004. Developing tetraploid perennial ryegrass (Lolium perenne L.) populations. New Zealand Journal of Agricultural Research. 47:45–49. doi:10.1080/00288233.2004.9513569.
  • NASEM. 2016. Genetically engineered crops: experiences and prospects. Washington, DC: National Academies Press. doi:10.17226/23395.
  • New Zealand Legislation. 1996. Hazardous Substances and New Organisms Act 1996; [accessed 2021 Dec 5]. https://legislation.govt.nz/act/public/1996/0030/latest/DLM381228.html.
  • Nicolia A, Manzo A, Veronesi F, Rosellini D. 2014. An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology. 34:77–88. doi:10.3109/07388551.2013.823595.
  • Niu C, Li H, Jiang L, Yan M, Li C, Geng D, Xie Y, Yan Y, Shen X, Chen P, Dong J. 2019. Genome-wide identification of drought-responsive microRNAs in two sets of Malus from interspecific hybrid progenies. Horticulture Research. 6: Article 75. doi:10.1038/s41438-019-0157-z.
  • Novotny E. 2018. Retraction by corruption: the 2012 Séralini paper. Journal of Biological Physics and Chemistry. 18:32–56. doi:10.4024/19NO17F.jbpc.18.01.
  • Nyquist WE, Baker RJ. 1991. Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences. 10:235–322. doi:10.1080/07352689109382313.
  • OGTR. 2021. Office of the Gene Technology Regulator. Technical review of the Gene Technology Regulations 2001 Decision Regulation Impact Statement; [accessed 28 December 2022]. https://www.ogtr.gov.au/sites/default/files/files/2021-07/decision_ris.pdf.
  • Oh TJ, May GD. 2001. Oligonucleotide-directed plant gene targeting. Current Opinion in Biotechnology. 12:169–172. doi:10.1016/S0958-1669(00)00194-4.
  • O'Keefe M, Perrault S, Halpern J, Ikemoto L, Yarborough M. 2015 “Editing” genes: a case study about how language matters in bioethics. The American Journal of Bioethics. 15:3–10. doi:10.1080/15265161.2015.1103804.
  • Okuzaki A, Toriyama K. 2004. Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Reports. 22:509–512. doi:10.1007/s00299-003-0698-2.
  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M. 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment. 30:1–16. doi:10.1080/13102818.2015.1087333.
  • Oreskes N, Conway EM. 2010. Merchants of doubt: how a handful of scientists obscured the truth on issues from tobacco smoke to global warming. London (UK): Bloomsbury.
  • Ortiz R. 2020. Göte Turesson’s research legacy to hereditas: from the ecotype concept in plants to the analysis of landraces’ diversity in crops. Hereditas. 157:44. doi:10.1186/s41065-020-00159-5.
  • Ospovat D. 1995. The development of Darwin's theory: natural history, natural theology, and natural selection, 1838-1859. Cambridge.: Cambridge University Press.
  • Pandey PK, Quilichini TD, Vaid N, Gao P, Xiang D, Datla R. 2019. Versatile and multifaceted CRISPR/Cas gene editing tool for plant research. Seminars in Cell & Developmental Biology. 96:107–114. Academic Press. doi:10.1016/j.semcdb.2019.04.012
  • Parisi C, Rodríguez-Cerezo E. 2021. Current and future market applications of new genomic techniques. EUR 30589 EN. Luxembourg: Publications Office of the European Union. 52. doi:10.2760/02472, JRC123830.
  • Patel R, Torres RJ, Rosset P. 2005. Genetic engineering in agriculture and corporate engineering in public debate: risk, public relations, and public debate over genetically modified crops. International Journal of Occupational and Environmental Health. 11:428–436. doi:10.1179/oeh.2005.11.4.428.
  • Pathak B, Srivastava V. 2020. Recombinase-mediated integration of a multigene cassette in rice leads to stable expression and inheritance of the stacked locus. Plant Direct. 4:1–10. doi:10.1002/pld3.236.
  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal. 15:1509–1519. doi:10.1111/pbi.12733.
  • Penna S, Jain SM. 2023. Fruit crop improvement with genome editing, in vitro and transgenic approaches. Horticulturae. 9: Article 58. doi:10.3390/horticulturae9010058.
  • Pereira-Lorenzo S, Costa R, Anagnostakis S, Serdar U, Yamamoto T, Saito T, Ramos-Cabrer AM, Ling Q, Barreneche T, Robin C, Botta R. 2016. Interspecific hybridization of chestnut. Polyploidy and Hybridization for Crop Improvement. 15:377–408.
  • Perrella G, Bäurle I, van Zanten M. 2022. Epigenetic regulation of thermomorphogenesis and heat stress tolerance. New Phytologist. 234:1144–1160. doi:10.1111/nph.17970.
  • Petolino JF, Kumar S. 2016. Transgenic trait deployment using designed nucleases. Plant Biotechnology Journal. 14:503–509. doi:10.1111/pbi.12457.
  • Pignone D, De Paola D, Rapanà N, Janni M. 2015. Single seed descent: a tool to exploit durum wheat (Triticum durum desf.) genetic resources. Genetic Resources and Crop Evolution. 62:1029–1035. doi:10.1007/s10722-014-0206-2.
  • Planchais S, Glab N, Inzé D, Bergonioux C. 2000. Chemical inhibitors: a tool for plant cell cycle studies. FEBS Letters. 476:78–83. doi:10.1016/S0014-5793(00)01675-6.
  • Poehlman JM. 2013. Breeding field crops. The Netherlands: Springer Netherlands.
  • Pramanik KA, Sahoo JP, Mohapatra PP, Acharya LK, Jena CH. 2021. Insights into the embryo rescue-a modern in-vitro crop improvement approach in horticulture. Plant Cell Biotechnology Molecular Biology. 22:20–33.
  • Prigge V, Melchinger AE. 2012. Production of haploids and doubled haploids in maize. In: Loyola-Vargas V, Ochoa-Alejo N, editors. Plant cell culture protocols. Totowa, NJ: Humana Press; p. 161–172. doi:10.1007/978-1-61779-818-4_13
  • Provine WB. 1971. The origins of theoretical population genetics. Chicago: The University of Chicago Press.
  • Puchta H. 2016. Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. The Plant Journal. 87:5–15. doi:10.1111/tpj.13100.
  • Qaim M. 2015. Global impact of GM crops, 1996–2015. In: Clive James C, Teng P, Arujanan M, Aldemita RR, Flavell RB, Brookes G, Qaim M, editors. Invitational essays to celebrate the 20th anniversary of the commercialization of biotech crops (1996 to 2015): progress and promise. ISAAA brief 51. Ithaca, NY: ISAAA; p. 54–56.
  • Qaim M. 2016. Genetically modified crops and agricultural development. New York: Palgrave Macmillan. https://books.google.co.nz/books?id = s-kYDAAAQBAJ.
  • Qaim M. 2020. Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy. 42:129–150. doi:10.1002/aepp.13044.
  • Que Q, Chilton MD, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L. 2010. Trait stacking in transgenic crops: challenges and opportunities. GM Crops. 1:220–229. doi:10.4161/gmcr.1.4.13439.
  • Quemada H. 2022. Lessons learned from the introduction of genetically engineered crops: relevance to gene drive deployment in Africa. Transgenic Research. 31:285–311. doi:10.1007/s11248-022-00300-2.
  • Raju SKK, Shao M-R, Sanchez R, Xu Y-Z, Sandhu A, Graef G, Mackenzie S. 2018. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnology Journal. 16:1836–1847. doi:10.1111/pbi.12919.
  • Ramanna MS, Jacobsen E. 2003. Relevance of sexual polyploidization for crop improvement: a review. Euphytica. 133:3–8. doi:10.1023/A:1025600824483.
  • Ramchiary N, Park S, Lim YP. 2011. Classical breeding and genetic analysis of vegetable brassicas. In: Sadowski J, Kole C, editors. Genetics, genomics and breeding of vegetable brassicas. Chapter 1. Boca Raton (FL): CRC Press; p. 34–61.
  • Randhawa HS, Bona L, Graf RJ. 2015. Triticale breeding—progress and prospect. In: Eudes F, editor. Triticale. Cham: Springer; p. 15–32. doi:10.1007/978-3-319-22551-7_2
  • Ranney TG. 2006. Polyploidy: from evolution to new plant development. Proceedings International Plant Propagators’ Society. 56:137–142.
  • Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z. 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in chardonnay (Vitis vinifera L.). Scientific Reports. 6: Article 32289. doi:10.1038/srep32289.
  • Rieseberg LH, Church SA, Morjan CL. 2004. Integration of populations and differentiation of species. New Phytologist. 161:59–69. doi:10.1046/j.1469-8137.2003.00933.x.
  • Rio Declaration. 1992. Rio declaration on environment and development. The United Nations Conference on Environment and Development, Rio de Janeiro from 3 to 14 June 1992; [accessed 1 January 2023]. https://www.cbd.int/doc/ref/rio-declaration.shtml.
  • Rogers C, Oldroyd GED. 2014. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany. 65:1939–1946. doi:10.1093/jxb/eru098.
  • Rommens CM. 2004. All-native DNA transformation: a new approach to plant genetic engineering. Trends in Plant Science. 9:457–464.
  • Rommens CM, Haring MA, Swords K, Davies HV. 2007. The intragenic approach as a new extension to traditional plant breeding. Trends in Plant Science. 12:397–403. doi:10.1016/j.tplants.2007.08.001.
  • Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K. 2004. Crop improvement through modification of the plant’s own genome. Plant Physiology. 135:421–431.
  • Royal Society Te Apārangi. 2019. Gene editing: scenarios in the primary industries; [accessed 12 January 2023]. https://www.royalsociety.org.nz/assets/Uploads/Gene-Editing-Scenarios-Primary-industries-DIGITAL.pdf.
  • Rozas P, Kessi-Pérez EI, Martínez C. 2022. Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biological Research. 55: Article 31. doi:10.1186/s40659-022-00399-x.
  • Rozin P. 2005. The meaning of “natural”. Psychological Science. 16:652–658.
  • Rozin P. 2006. Naturalness judgments by lay Americans: process dominates content in judgments of food or water acceptability and naturalness. Judgment and Decision Making. 1:91–97.
  • Ruse M. 1975. Charles Darwin’s theory of evolution: an analysis. Journal of the History of Biology. 8:219–241. http://www.jstor.org/stable/4330635.
  • Sadowski J, Kole C. 2016. Genetics, genomics and breeding of vegetable brassicas. Boca Raton: CRC Press. 450. doi:10.1201/b10880
  • Salamini F, Ozkan H, Brandolini A, Schäfer-Pregl R, Martin W. 2002. Genetics and geography of wild cereal domestication in the near east. Nature Reviews Genetics. 3:429–441. doi:10.1038/nrg817.
  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F. 2018. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal. 16:902–910. doi:10.1111/pbi.12837.
  • Sandhu KS, Merrick LF, Sankaran S, Zhang Z, Carter AH. 2022a. Prospectus of genomic selection and phenomics in cereal, legume and oilseed breeding programs. Frontiers in Genetics. 12: Article 829131. doi:10.3389/fgene.2021.829131.
  • Sandhu KS, Shiv A, Kaur G, Meena MR, Raja AK, Vengavasi K, Mall AK, Kumar S, Singh PK, Singh J, et al. 2022b. Integrated approach in genomic selection to accelerate genetic gain in sugarcane. Plants. 11: Article 2139. doi:10.3390/plants11162139.
  • Sandler R. 2004. An aretaic objection to agricultural biotechnology. Journal of Agricultural and Environmental Ethics. 17:301–317. doi:10.1023/B:JAGE.0000033078.05859.08.
  • Sanford JC. 1990. Biolistic plant transformation. Physiologia Plantarum. 79:206–209. doi:10.1111/j.1399-3054.1990.tb05888.x.
  • Sattler MC, Carvalho CR, Clarindo WR. 2016. The polyploidy and its key role in plant breeding. Planta. 243:281–296. doi:10.1007/s00425-015-2450-x.
  • Sauer NJ, Mozoruk J, Miller RB, Warburg ZJ, Walker KA, Beetham PR, Schöpke CR, Gocal GFW. 2016. Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnology Journal. 14:496–502. doi:10.1111/pbi.12496.
  • Saurabh S, Vidyarthi AS, Prasad D. 2014. RNA interference: concept to reality in crop improvement. Planta. 239:543–564. doi:10.1007/s00425-013-2019-5.
  • Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, et al. 2014. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. The Plant Cell. 26:3763–3774. doi:10.1105/tpc.114.130096.
  • Schaart JG, van de Wiel CCM, Lotz LAP, Smulders MJM. 2016. Opportunities for products of new plant breeding techniques. Trends in Plant Science. 21:438–449. doi:10.1016/j.tplants.2015.11.006.
  • Schaart JG, Visser RG. 2009. Novel plant breeding techniques. Consequences of new genetic modification-based plant breeding techniques in comparison to conventional plant breeding. Wageningen (NT): Wageningen University and Research Center; COGEM Research Report Number 2009-02. The Netherlands Commission on Genetic Modification; [accessed 6 January 2023]. https://edepot.wur.nl/137009.
  • Schmidt CW. 2005. Genetically modified foods: breeding uncertainty. Environmental Health Perspectives. 113:A526–A533. doi:10.1289/ehp.113-a526.
  • Schouten HJ, Krens FA, Jacobsen E. 2006. Cisgenic plants are similar to traditionally bred plants. EMBO Reports. 7:750–753. doi:10.1038/sj.embor.7400769.
  • Schuermann D, Molinier J, Fritsch O, Hohn B. 2005. The dual nature of homologous recombination in plants. TRENDS in Genetics. 21:172–181. doi:10.1016/j.tig.2005.01.002.
  • Senthil-Kumar M, Mysore KS. 2011. New dimensions for VIGS in plant functional genomics. Trends in Plant Science. 16:656–665. doi:10.1016/j.tplants.2011.08.006.
  • Séralini GE, Mesnage CE, Gress R, Defarge S, Malatesta N, Hennequin M, de Vendômois D, S J. 2014. Republished study: long-term toxicity of a roundup herbicide and a roundup-tolerant genetically modified maize. Environmental Sciences Europe. 26: Article 14. http://www.enveurope.com/content/26/1/14.
  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C. 2015. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnology Journal. 13:791–800. doi:10.1111/pbi.12312.
  • Shen C, Yin X-C, Jiao B-Y, Li J, Jia P, Zhang X-W, Cheng X-H, Ren J-X, Lan H-D, Hou W-B, et al. 2022. Evaluation of adverse effects/events of genetically modified food consumption: a systematic review of animal and human studies. Environmental Sciences Europe. 34: Article 8. doi:10.1186/s12302-021-00578-9.
  • Shen J-X, Fu T-D, Yang G-S, Tu J-X, Ma C-Z. 2006. Prediction of heterosis using QTLs for yield traits in rapeseed (Brassica napus L.). Euphytica. 151:165–171. doi:10.1007/s10681-006-9137-0.
  • Shew AM, Nalley LL, Snell HA, Nayga RM, Dixon BL. 2018. CRISPR versus GMOs: public acceptance and valuation. Global Food Security. 19:71–80. doi:10.1016/j.gfs.2018.10.005.
  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE. 2017. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal. 15:207–216. doi:10.1111/pbi.12603.
  • Shukla V, Doyon Y, Miller J, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, et al. 2009. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 459:437–441. doi:10.1038/nature07992.
  • Siegrist M. 2008. Factors influencing public acceptance of innovative food technologies and products. Trends in Food Science & Technology. 19:603–608. doi:10.1016/j.tifs.2008.01.017.
  • Singh RK, Prasad M. 2022. Biomolecules of mushroom: a recipe of human wellness. Critical Reviews in Biotechnology. 42:913–930. doi:10.1080/07388551.2021.1964431.
  • Sjöberg L. 2000. Perceived risk and tampering with nature. Journal of Risk Research. 3:353–367. doi:10.1080/13669870050132568.
  • Smirnova OG, Ibragimova SS, Kochetov AV. 2012. Simple database to select promoters for plant transgenesis. Transgenic Research. 21:429–437. doi:10.1007/s11248-011-9538-2.
  • Smyth SJ, Lassoued R. 2019. Agriculture R&D implications of the CJEU’s gene-specific mutagenesis ruling. Trends in Biotechnology. 37:337–340. doi:10.1016/j.tibtech.2018.09.004.
  • Snape J, Riggs T. 1975. Genetical consequences of single seed descent in the breeding of self-pollinating crops. Heredity. 35:211–219. doi:10.1038/hdy.1975.85.
  • Song G-q, Sink KC, Walworth AE, Cook MA, Allison RF, Lang GA. 2013. Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing. Plant Biotechnology Journal. 11:702–708. doi:10.1111/pbi.12060.
  • Songstad DD, Petolino JF, Voytas DF, Reichert NA. 2017. Genome editing of plants. Critical Reviews in Plant Sciences. 36:1–23. doi:10.1080/07352689.2017.1281663.
  • Sopory S, Munshi M. 1996. Anther culture. In: Jain SM, Sopory SK, Veilleux RE, editors. In vitro haploid production in higher plants, vol. 23. Dordrecht: Kluwer; p. 145–176. doi:10.1007/978-94-017-1860-8_9
  • Sprague GF. 1946. The experimental basis for hybrid maize. Biological Reviews. 21:101–120. doi:10.1111/j.1469-185X.1946.tb00317.x.
  • Sprink T, Wilhelm R, Hartung F. 2022. Genome editing around the globe: an update on policies and perceptions. Plant Physiology. 190:1579–1587. doi:10.1093/plphys/kiac359.
  • Stenseth NC, Andersson L, Hoekstra HE. 2022. Gregor Johann Mendel and the development of modern evolutionary biology. Proceedings of the National Academy of Sciences. 119(30):Article 119. doi:10.1073/pnas.2201327119.
  • Stoskopf NC, Tomes DT, Christie BR. 2019. Plant breeding: theory and practice. London and New York: Routledge Taylor and Francis Group.
  • Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Spinger NM. 2008. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biology. 8: Article 33. doi:10.1186/1471-2229-8-33.
  • Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L. 2017. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science. 8: Article 298. doi:10.3389/fpls.2017.00298.
  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology. 169:931–945. doi:10.1104/pp.15.00793.
  • Szymajda M, Napiórkowska B, Korbin M, Żurawicz E. 2015. Studies on the interspecific crossing compatibility among three Prunus species and their hybrids. Horticultural Science. 42(2):70–82. doi:10.17221/273/2014-HORTSCI.
  • Tagliabue G. 2016. The meaningless pseudo-category of “GMOs”. EMBO Reports. 17:10–13. doi:10.15252/embr.201541385.
  • Tait J. 2001. More faust than frankenstein: The European debate about the precautionary principle and risk regulation for genetically modified crops. Journal of Risk Research. 4:175–189. doi:10.1080/13669870010027640.
  • Tak S, Kaushik RA, Nath A. 2016. Studies on heterosis in interspecific hybrids of cucumis. The Bioscan. 11:3155–3159.
  • The Royal Society. 2016. Is it safe to eat GM crops?; [accessed 1 January 2023]. https://royalsociety.org/topics-policy/projects/gm-plants/is-it-safe-to-eat-gm-crops/.
  • Tirado R, Johnston P. 2010. Food security: GM crops threaten biodiversity. Science. 328:170–171.
  • Tourism NZ. 2009. Pure as celebrating 10 years of 100% Pure New Zealand; [accessed 27 April 2022]. https://www.tourismnewzealand.com/media/1544/pure-as-celebrating-10-years-of-100-pure-new-zealand.pdf.
  • Townsend J, Wright D, Winfrey R, Fu F, Maeder ML, Joung JK, Voytas DF. 2009. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature. 459:442–445. doi:10.1038/nature07845.
  • Tozer KN, Carswell K, Griffiths WM, Crush JR, Cameron CA, Chapman DF, Popay A, King W. 2017. Growth responses of diploid and tetraploid perennial ryegrass (Lolium perenne) to soil-moisture deficit, defoliation and a root-feeding invertebrate. Crop and Pasture Science. 68:632–642. doi:10.1071/CP17154.
  • Trethowan RM, Reynolds MP, Ortiz-Monasterio JI, Ortiz R. 2007. The genetic basis of the green revolution in wheat production. Plant Breeding Reviews. 28:39–58.
  • Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L. 2019. CRISPR/cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communications Biology. 2: Article 46. doi:10.1038/s42003-019-0288-7.
  • Turnbull C, Lillemo M, Hvoslef-Eide TA. 2021. Global regulation of genetically modified crops amid the gene edited crop boom – A review. Frontiers in Plant Science. 12: Article 630396. doi:10.3389/fpls.2021.630396.
  • United States Patent. 2009. Tomato plants. Patent No.: US 7,612.261 B2; [accessed 25 February 2023]. https://patentimages.storage.googleapis.com/17/d5/0d/dcba5fd7f54abf/US7612261.pdf.
  • USDA. 2022. Agricultural Biotechnology Glossary; [accessed 27 December 2022]. https://www.usda.gov/topics/biotechnology/biotechnology-glossary#:~:text = Genetic%20engineering%3A%20Manipulation%20of%20an,to%20as%20recombinant%20DNA%20techniques.
  • Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C. 2011. The development of a cisgenic apple plant. Journal of Biotechnology. 154:304–311.
  • Vanderzwaag DL, Fuller SD, Myers RA. 2002. Canada and the precautionary principle/approach in ocean and coastal management: wading and wandering in tricky currents. Ottawa Law Review. 34:117–158.
  • van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de JS, Gonzalez J, RossIbarra J. 2011. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences. 108:1088–1092. doi:10.1073/pnas.1013011108.
  • Vanlay M, Samnang S, Jung H-J, Choe P, Kang KK, Nou I-S. 2022. Interspecific and intraspecific hybrid rootstocks to improve horticultural traits and soil-borne disease resistance in tomato. Genes. 13: Article 1468. doi:10.3390/genes13081468.
  • Van Tuyl JM, Lim K-B. 2003. Interspecific hybridisation and polyploidisation as tools in ornamental plant breeding. Acta Horticulturae. 612:13–22. doi:10.17660/ActaHortic.2003.612.1.
  • Vega Rodríguez A, Rodríguez-Oramas C, Sanjuán Velázquez E, Hardisson de la Torre A, Rubio Armendáriz C, Carrascosa Iruzubieta C. 2022. Myths and realities about genetically modified food: a risk-benefit analysis. Applied Sciences. 12: Article 2861. doi:10.3390/app12062861.
  • Veillet F, Perrot L, Chauvin L, Kermarrec M-P, Guyon-Debast A, Chauvin J-E, Nogué F, Mazier M. 2019. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. International Journal of Molecular Sciences. 20: Article 402. doi:10.3390/ijms20020402.
  • Verma N, Giri SK, Singh G, Gill R, Kumar A. 2022. Epigenetic regulation of heat and cold stress responses in crop plants. Plant Gene. 17: Article 100351. doi:10.1016/j.plgene.2022.100351.
  • Vida G, Gál M, Uhrin A, Veisz O, Syed MH, Flavell AJ, Wang Z, Bedő Z. 2009. Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance. Euphytica. 170:67–76. doi:10.1007/s10681-009-9945-0.
  • Virmani SS, Aquino RC, Khush GS. 1982. Heterosis breeding in rice (Oryza sativa L.). Theoretical and Applied Genetics. 63:373–380. doi:10.1007/BF00303911.
  • Waltz E. 2015. USDA approves next-generation GM potato. Nature Biotechnology. 33:12–13. doi:10.1038/nbt0115-12.
  • Waltz E. 2016. CRISPR-edited crops free to enter market, skip regulation. Nature Biotechnology. 34: Article 582. doi:10.1038/nbt0616-582.
  • Waltz E. 2018. With a free pass, CRISPR-edited plants reach market in record time. Nature Biotechnology. 36:6–7. doi:10.1038/nbt0118-6b.
  • Waltz E. 2019. Appetite grows for biotech foods with health benefits. Nature Biotechnology. 37:573–575. doi:10.1038/d41587-019-00012-9.
  • Waltz E. 2022. GABA-enriched tomato is first CRISPR-edited food to enter market. Nature Biotechnology. 40:9–11. doi:https://doi.org/10.1038/d41587-021-00026-2.
  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu Y-G, Zhao K. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One. 11: Article e0154027. doi:10.1371/journal.pone.0154027.
  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology. 32:947–951. doi:10.1038/nbt.2969.
  • Wehrs M, Tanjore D, Eng T, Lievense J, Pray TR, Mukhopadhyay A. 2019. Engineering robust production microbes for large-scale cultivation. Trends in Microbiology. 27:524–537. doi:10.1016/j.tim.2019.01.006.
  • Weinhold B. 2006. Epigenetics: The science of change. Environmental Health Perspectives. 114: Article 3. doi:10.1289/ehp.114-a160.
  • Wesseler J, Bonanno A, Drabik D, Materia VC, Malaguti L, Meyer M, Venus TJ. 2015. Overview of the agricultural input sector in the EU. Directorate-General for Internal Policies. Policy Department B: Structural and Cohesion Policies. Agriculture and Rural Development. doi:10.2861/49815.
  • West JD, Bergstrom CT. 2021. Misinformation in and about science. Proceedings of the National Academy of Sciences 118: Article e1912444117. https://www.pnas.org/doi/abs/10.1073pnas.1912444117.
  • West-Eberhard MJ. 1989. Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics. 20:249–278. https://www.jstor.org/stable/2097092.
  • Wheatley MS, Yang Y. 2021. Versatile applications of the CRISPR/Cas toolkit in plant pathology and disease management. Phytopathology. 111:1080–1090. doi:10.1094/PHYTO-08-20-0322-IA.
  • Whelan AI, Lema MA. 2015. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops & Food. 6:253–265. doi:10.1080/21645698.2015.1114698.
  • Wiener JB. 2001. Precaution in a multi-risk world. Duke Law School public law and legal theory working paper series, Working Paper No. 23. Durham, North Carolina; [accessed 26 February 2023]. https://papers.ssrn.com/sol3/papers.cfm?abstract_id = 293859.
  • Wilkins J. 2007. The dimensions, modes and definitions of species and speciation. Biology & Philosophy. 22:247–266. doi:10.1007/s10539-006-9043-9.
  • Wolter F, Schindele P, Puchta H. 2019. Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology. 19: Article 176. doi:10.1186/s12870-019-1775-1.
  • Wu J, Chen C, Xian G, Liu D, Lin L, Yin S, Sun Q, Fang Y, Zhang H, Wang Y. 2020. Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnology Journal. 18:1857–1859. doi:10.1111/pbi.13368.
  • Yamagishi H, Bhat SR. 2014. Cytoplasmic male sterility in Brassicaceae crops. Breeding Science. 64:38–47. doi:10.1270/jsbbs.64.38.
  • Yang J, Zimmerly S, Perlman PS, Lambowitz AM. 1996. Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature. 381:332–335. doi:10.1038/381332a0.
  • Yilmaz S, Nyerges A, van der Oost J, Church GM, Claassens NJ. 2022. Towards next-generation cell factories by rational genome-scale engineering. Nature Catalysis. 5:751–765. doi:10.1038/s41929-022-00836-w.
  • Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin HC, Coe RA, Kretzschmar T, Gray JE. 2017. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports. 36:745–757. doi:10.1007/s00299-017-2118-z.
  • Young ND. 1999. Cautiously optimistic vision for marker-assisted breeding. Molecular Breeding. 5:505–510. doi:10.1023/A:1009684409326.
  • Younis A, Hwang YJ, Lim KB. 2014. Exploitation of induced 2n-gametes for plant breeding. Plant Cell Reports. 33:215–223. doi:10.1007/s00299-013-1534-y.
  • Zachos FE. 2016. Species concepts in biology: historical development, theoretical foundations and practical relevance. Springer International Publishing Switzerland. 227. doi: 10.1007/978-3-319-44966-1
  • Zafar SA, Zaidi SSEA, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A. 2020. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. Journal of Experimental Botany. 71:470–479. doi:10.1093/jxb/erz476.
  • Zaidi SS, Vanderschuren H, Qaim M, Mahfouz MM, Kohli A, Mansoor S, Tester M. 2019. New plant breeding technologies for food security. Science. 363:1390–1391. https://www.science.org/doi/abs/10.1126science.aav6316.
  • Zanoni U, Dudley JW. 1989. Comparison of different methods of identifying inbreds useful for improving elite maize hybrids. Crop Science. 29:577–582. doi:10.2135/cropsci1989.0011183X002900030005x.
  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 163:759–771. doi:10.1016/j.cell.2015.09.038.
  • Zeven AC. 1998. Landraces: a review of definitions and classifications. Euphytica. 104:127–139.
  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J-K. 2014. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal. 12:797–807. doi:10.1111/pbi.12200.
  • Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL. 2000. Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nature Biotechnology. 18:555–558. doi:10.1038/75435.
  • Zhu X, Liu X, Liu T, Wang Y, Ahmed N, Li Z, Jiang H. 2021. Synthetic biology of plant natural products: from pathway elucidation to engineered biosynthesis in plant cells. Plant Communications. 2: Article 100229. doi:10.1016/j.xplc.2021.100229
  • Zsögön A, Čermák T, Naves E, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP. 2018. De novo domestication of wild tomato using genome editing. Nature Biotechnology. 36:1211–1216. doi:10.1038/nbt.4272.