115
Views
0
CrossRef citations to date
0
Altmetric
SHORT COMMUNICATION

Comparative assessment of N2O emissions from a New Zealand hypereutrophic lake against an oligotrophic reservoir

, , &
Received 05 Dec 2023, Accepted 13 Mar 2024, Published online: 04 Apr 2024

References

  • Bartram D, Short MD, Ebie Y, Farkaš J, Gueguen C, Peters GM, Zanzottera NM, Karthik M, Masuda S. 2019. Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories – Volume 5– Chapter 6: Wastewater treatment and discharge. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, et al. 2013. Carbon and other biogeochemical cycles (Ch. 6). In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of The Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; p. 465–570.
  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE. 2009. Controlling eutrophication: nitrogen and phosphorus. Science. 323(5917):1014–1015. doi:10.1126/science.1167755.
  • Deemer BR, Harrison JA, Whitling EW. 2011. Microbial dinitrogen and nitrous oxide production in a small eutrophic reservoir: an in situ approach to quantifying hypolimnetic process rates. Limnol Oceanogr. 56(4):1189–1199. doi:10.4319/lo.2011.56.4.1189.
  • DelSontro T, Beaulieu JJ, Downing JA. 2018. Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnol Oceanogr Letters. 3(3):64–75. doi:10.1002/lol2.10073.
  • Dugan HA, Woolway RI, Santoso AB, Corman JR, Jaimes A, Nodime ER, et al. 2016. Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes. Inland Waters. 6(4):581–592. doi:10.1080/IW-6.4.836.
  • Fabisik R, Guieysse B, Procter J, Plouviez M. 2023. Nitrous oxide (N2O) synthesis by the freshwater cyanobacterium Microcystis aeruginosa. Biogeosciences. 20:687–693. doi:10.5194/bg-20-687-2023.
  • Gibb MM. 2011. Lake Horowhenua review assessment of opportunities to address water quality issues in Lake Horowhenua. Prepared by NIWA Hamilton for Horizons Regional Council, Horizons Regional Council Report No. 2011/EXT/1172, ISBN 978-1-927250-23-5.
  • Gibbs MM, Roygard J, Patterson M, Brown L, Brown D. 2022. Factors influencing cyanobacteria blooms: review of the historical monitoring data to assess management options for Lake Horowhenua. New Zeal J Mar Fresh. 58:1–27. doi:10.1080/00288330.2022.2107028.
  • Hergoualc’h K, Akiyama H, Bernoux M, Chirinda N, del Prado A, Kasimir A, MacDonald JD, Ogle SM, Regina K, van der Weerden TJ. 2019. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories—Volume 4 Agriculture, Forestry and Other Land Use. In: Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
  • Jenny J-P, Francus P, Normandeau A, Lapointe F, Perga M-E, Ojala A, Schimmelmann A, Zolitschka B. 2016. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob Chang Biol. 22:1481–1489. doi:10.1111/gcb.13193.
  • Kortelainen P, Larmola T, Rantakari M, Juutinen S, Alm J, Martikainen PJ. 2020. Lakes as nitrous oxide sources in the boreal landscape. Glob Chang Biol. 26:1432–1445. doi:10.1111/gcb.14928.
  • McCrackin ML, Elser JJ. 2011. Greenhouse gas dynamics in lakes receiving atmospheric nitrogen deposition: greenhouse gases in lakes. Global Biogeochem Cy. 25(4):1–12. doi:10.1029/2010GB003897.
  • Mengis M. 1997. Sources and sinks of nitrous oxide (N₂O) in deep lakes. Biogeochemistry. 37:281–301. doi:10.1023/A:1005814020322.
  • Miao Y, Huang J, Duan H, Meng H, Wang Z, Qi T, Wu QL. 2020. Spatial and seasonal variability of nitrous oxide in a large freshwater lake in the lower reaches of the Yangtze River, China. Sci Total Environ. 721:137716. doi:10.1016/j.scitotenv.2020.137716.
  • Ministry for the Environment and Stats NZ. 2020. Our Freshwater 2020. https://environment.govt.nz/assets/Publications/Files/our-freshwater-2020.pdf.
  • Ministry for the Environment, New Zealand’s Greenhouse Gas Inventory 1990 – 2021. 2023. https://environment.govt.nz/assets/publications/GhG-Inventory/New-Zealand-Greenhouse-Gas-Inventory-1990-2020-Chapters-1-15.pdf.
  • Nathan S. 2022. ‘Lakes – New Zealand lakes’, Te Ara – the Encyclopedia of New Zealand; [accessed 29 April 2023]. http://www.TeAra.govt.nz/en/lakes/page-1.
  • Pickering A, Gibbs J, Wear S, Fick J, Tomlin H. 2022. Methodology for calculation of New Zealand’s agricultural greenhouse gas emissions. MPI Technical Paper, ISBN No: 978-1-99-001720-9.
  • Plouviez M, Chambonnière P, Shilton A, Packer MA, Guieysse B. 2019a. Nitrous oxide (N₂O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Res. 44:101670. doi:10.1016/j.algal.2019.101670.
  • Plouviez M, Fernandez E, Grossman RA, Sanz-Luque E, Sells M, Wheeler D, Guieysse B. 2021. Responses of Chlamydomonas reinhardtii during the transition from P-deficient to P-sufficient growth (the P-overplus response): the roles of the vacuolar transport chaperones and polyphosphate synthesis. J Phycol. 57(3):988–1003. doi:10.1111/jpy.13145.
  • Plouviez M, Guieysse B. 2020. Nitrous oxide emissions during microalgae-based wastewater treatment: current state of the art and implication for greenhouse gases budgeting. Water Sci. Technol. 82:1025–1030.
  • Plouviez M, Shilton A, Packer MA, Guieysse B. 2019b. Nitrous oxide emissions from microalgae: potential pathways and significance. J Appl Phycol. 31(1):1–8. doi:10.1007/s10811-018-1531-1.
  • Plouviez M, Wheeler D, Shilton A, Packer MA, Mc Lenachan PA, Sanz-Luque E, Francisco O-C, Fernández E, Guieysse B. 2017. The biosynthesis of nitrous oxide in the green algae Chlamydomonas reinhardtii. Plant J. 91:45–56. doi:10.1111/tpj.13544.
  • Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N₂O): the dominant ozone-depleting substance emitted in the 21st century. Science. 326(5949):123–125. doi:10.1126/science.1176985.
  • Schallenberg M, Vermeulen M. 2022. Phosphorus and Nitrogen Budgets for Lake Horowhenua, Report No. 2022/EXT/1780.
  • Schwarzenbach PM. 2005. Air-water exchange. In: Schwarzenbach RP, Gschwend PM, Imboden DM, editors. Environmental organic chemistry. 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc; p. 887–943.
  • Teuma L, Sanz-Luque E, Guieysse B, Plouviez M. 2023. Are microalgae new players in nitrous oxide emissions from eutrophic aquatic environments? Phycology. 3(3):356–367. doi:10.3390/phycology3030023.
  • Tian H, Xu R, Canadell JG, Thompson RL, Winiwarter W, Suntharalingam P, Davidson EA, Ciais P, Jackson RB, Janssens-Maenhout G, et al. 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature. 586(7828):248–256. doi:10.1038/s41586-020-2780-0.
  • Tian L, Cai Y, Akiyama H. 2019. A review of indirect N2O emission factors from agricultural nitrogen leaching and runoff to update of the default IPCC values. Environ Pollut. 240:300–306. doi:10.1016/j.envpol.2018.11.016.
  • Wang H, Wang W, Yin C, Wang Y, Lu J. 2006. Littoral zones as the “hotspots” of nitrous oxide (N₂O) emission in a hyper-eutrophic lake in China. Atmos Environ. 40(28):5522–5527. doi:10.1016/j.atmosenv.2006.04.045.
  • Webb JR, Clough TJ, Quayle WC. 2021. A review of indirect N2O emission factors from artificial agricultural waters. Environ Res Lett. 16:e043005.
  • Webb JR, Hayes NM, Simpson GL, Leavitt PR, Baulch HM, Finlay K. 2019. Widespread nitrous oxide undersaturation in farm waterbodies creates an unexpected greenhouse gas sink. PNAS. 116(20):9814–9819. doi:10.1073/pnas.1820389116.
  • Webb JR, Quayle WC, Ballester C, Wells NS. 2023. Semi-arid irrigation farm dams are a small source of greenhouse gas emissions. Biogeochemistry. 166:123–138. doi:10.1007/s10533-023-01100-4.
  • Wood SA, Maier MY, Puddick J, Pochon X, Zaiko A, Dietrich DR, Hamilton DP. 2017. Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes. FEMS Microbiology Ecology. 93(2):fiw234. doi:10.1093/femsec/fiw234.
  • Xiao Q, Xu X, Zhang M, Duan H, Hu Z, Wang W, Lee X. 2018. Coregulation of nitrous oxide emissions by nitrogen and temperature in China's third largest freshwater lake (Lake Taihu). Limnol Oceanogr. 64(3):1070–1086. doi:10.1002/lno.11098.
  • Xu H, Paerl HW, Qin B, Zhu G, Gaoa G. 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic lake Taihu, China. Limnol Oceanogr. 55:420–432. doi:10.4319/lo.2010.55.1.0420.
  • Yang X, Wu X, Hao H, He Z. 2008. Mechanisms and assessment of water eutrophication. Journal of Zhejiang University Science B. 9(3):197–209. doi:10.1631/jzus.B0710626.