71
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Plasma homocysteine levels in patients with β‐thalassaemia major

, &
Pages 134-139 | Received 26 Mar 2007, Accepted 02 Jun 2007, Published online: 08 Jul 2009

References

  • Higgs D. R., Thein S. L., Woods W. G. The molecular pathology of the thalassaemias. The thalassaemia syndromes. 4th edn, D. J Weatherall, B Clegg. Blackwell Science, Oxford 2001; 133–91
  • Cunningham M. J., Macklin E. A., Neufeld E. J., Cohen A. R. Complications of β‐thalassemia major in North America. Blood 2004; 104: 34–9
  • Thein S. L. Pathophysiology of β thalassemia: a guide to molecular therapies. Hematology 2005; 31–7
  • Koury M. J., Ponka P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr 2004; 24: 105–31
  • Tso S. C. Significance of subnormal red‐cell folate in thalassaemia. J Clin Pathol 1976; 29: 140–3
  • Kumar R., Saraya A. K., Choudhyr V. P., Sundaram K. R., Kailash S., Sehgal A. K. Vitamin B12, folate, and iron studies in homozygous beta thalassemia. Am J Clin Pathol 1985; 84: 668–71
  • Stefanovic V. Hyper‐homocysteinemia: a risk factor for CVD. Series Med Biol 2000; 7: 7–10
  • Vollset S. E., Refsum H., Irgens L. M., Emblem B. M., Tverdal A., Gjessing H. K., et al. Plasma total homocysteine, pregnancy complications, and adverse outcomes: the Hordaland Homocysteine Study. Am J Clin Nutr 2000; 71: 962–8
  • Nilsson K., Gustafson L., Faldt R., Andersson A., Brattström L., Lindgren A., et al. Hyperhomocysteinaemia – a common finding in a psychogeriatric population. Eur J Clin Invest 1996; 26: 853–9
  • Boushey C. J., Beresford S. A. A., Omenn G. S., Motulsky A. G. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. J Am Med Assoc 1995; 274: 1049–57
  • Brattstrom L. E., Hardebo J. E., Hultberg B. L. Moderate hyperhomocysteinemia: a possible risk factor for arteriosclerotic cerebrovascular disease. Stroke 1984; 15: 1012–16
  • Clarke R. Homocysteine and risk of ischemic heart disease and stroke: a meta‐analysis. J Am Med Assoc 2002; 288: 2015–22
  • Herrmann M., Widmann T., Herrmann W. Homocysteine – a newly recognized risk factor for osteoporosis. Clin Chem Lab Med 2005; 43: 1111–17
  • Stipanuk M. H. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 2004; 24: 539–77
  • Taoka S., Ohja S., Shan X., Kruger W. D., Banerjee R. Evidence for heme‐mediated redox regulation of human cystathionine β‐synthase activity. J Biol Chem 1998; 273: 25179–84
  • Mosharov E., Cranford M. R., Banerjee R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 2000; 39: 13005–11
  • Livrea M. A., Tesoriere L., Pintaudi A. M., Calabrese A., Maggio A., Freisleben H. J., et al. Oxidative stress and antioxidant status in β‐thalassemia major: iron overload and depletion of lipid‐soluble antioxidants. Blood 1996; 88: 3608–14
  • Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990; 186: 1–85
  • Suh J. R., Herbig A. K., Stover P. J. New perspectives on folate catabolism. Annu Rev Nutr 2001; 21: 255–82
  • Preibisch G., Kuffner C., Elstner E. F. Biochemical model reactions on the prooxidative activity of homocysteine. Z Naturforsch 1993; 48c: 58–62
  • Hirano K., Ogihara T., Miki M., et al. Homocysteine induces iron‐catalyzed lipid peroxidation of low density lipoprotein that is prevented by alpha‐tocopherol. Free Rad Res 1994; 21: 267–76
  • Barrano B., Bertrand G., Isaja T., Curreri R., Musumeci S. Plasma homocysteine is not involved in the thrombotic risk of β‐thalassemia major patients. Acta Haematologica 2000; 104: 148–50
  • Witko‐Sarsat V., Frielander M., Capeille're‐Blandin C., Nguyen‐Khoa T., Nguyen A. T., Zingraff J., et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996; 49: 1304–13
  • Miller N. J., Rice‐Evans C., Davies M. J., Gopinathan V., Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 1993; 84: 407–12
  • Kalousova M., Zima T., Tesar V., Krha J., Tipek S. Determination of advanced glycation end‐products and advanced oxidation protein products. Klin Biochem Metab 2002; 10: 11–16
  • Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004; 37: 277–85
  • Huerta J. M., Gonzalez S., Vigil E., Prada M., San Martın J., Fernández S., et al. Folate and cobalamin synergistically decrease the risk of high plasma homocysteine in a nonsupplemented elderly institutionalized population. Clin Biochem 2004; 37: 904–10
  • Welch G. N., Loscalzo J. Mechanism of disease: homocysteine and atherothrombosis. N Engl J Med 1998; 338: 1042–50
  • Miller J. W., Nadeau M. R., Smith J., Smith D., Selhub J. Folate‐deficiency‐induced homocysteinaemia in rats: disruption of S‐adenosylmethionine's co‐ordinate regulation of homocysteine metabolism. Biochem J 1994; 298: 415–41
  • Ratnam S., Maclean K. N., Jacobs R. L., Brosnan M. E., Kraus J. P., Brosnan J. T. Hormonal regulation of cystathionine β‐synthase expression in liver. J Biol Chem 2002; 277: 42912–18
  • Munke M., Kraus J. P., Ohura T., Francke U. The gene for cystathionine β‐synthase (CBS) maps to the subtelomeric region on human chromosome 21q and to proximal mouse chromosome. Am J Hum Genet 1988; 42: 550–9
  • Pogribna M., Melnyk S., Pogribny I., Chango A., Yi P., James S. J. Homocysteine metabolism in children with down syndrome: in vitro modulation. Am J Hum Genet 2001; 69: 88–95
  • Chadefaux B., Ceballos I., Hamet M., Coude M., Poissonnier M., Kamoun P., et al. Is absence of atheroma in Down syndrome due to decreased homocysteine levels?. Lancet 1988; 2: 741
  • Chen Z., Banerjee R. Purification of soluble cyto‐chrome b5 as a component of the reductive activation of porcine methionine synthase. J Biol Chem 1998; 273: 26248–55
  • Scott M. D., Rouyer‐Fessard P., Lubin B. H., Beuzard Y. Entrapment of purified α‐hemoglobin chains in normal erythrocytes: a model for thalassemia. J Biol Chem 1990; 265: 17953–9
  • Scott M. D., van den Berg J. J. M., Repka T., Rouyer‐Fessard P., Hebbel R. P., Beuzard Y., et al. Effect of excess α‐hemoglobin chains on cellular and membrane oxidation in model β‐thalassemic erythrocyte. Clin Invest 1993; 91: 1706–12
  • Scott M. D., Wagner T. C., Lubin B. H., Eaton J. W. ‘Loose’ iron: an important element in the pathogenesis of damage within beta thalassemic erythrocytes. Blood 1991; 78(Suppl 1)772
  • Sadrzadeh S. M., Graf H. E., Panter S. S., Hallaway P. E., Eaton J. W. Haemoglobin: a biologic Fenton reagent. J Biol Chem 1984; 259: 14354–6
  • Afanas'ev I. B. Superoxide and nitric oxide in pathological conditions associated with iron overload: the effects of antioxidants and chelators. Curr Med Chem 2005; 12: 763–71
  • Naithani R., Chandra J., Bhattacharjee J., Verma P., Narayan S. Peroxidative stress and antioxidant enzymes in children with β‐thalassemia major. Pediatr Blood Cancer 2005; 46: 780–5
  • Nicolaou A., Kenyon S. H., Gibbons J. M., Ast T., Gibbons W. A. In vitro inactivation of mammalian methionine synthase by nitric oxide. Eur J Clin Invest 1996; 26: 167–70
  • Danishpajooh I. O., Gudi T., Chen Y., Kharitonov V. G., Sharma V. S., Boss G. R. Nitric oxide inhibits methionine synthase activity in vivo and disrupts carbon flow through the folate pathway. J Biol Chem 2001; 276: 27296–303
  • Orkin S. H., Nathan D. G. The thalassemias. Hematology of infancy and childhood, D. G Nathan, S. H Orkin, D Ginsburg, T. A Look. Saunders84299, Philadelphia, Pa 2003
  • Centis F., Tabellini L., Lucarelli G., Buffi O., Tonucci P., Persini B., et al. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β‐thalassemia major. Blood 2000; 96: 3624–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.