180
Views
67
CrossRef citations to date
0
Altmetric
Original

The aspartic proteases

Pages 5-22 | Published online: 29 Mar 2011

References

  • Umezawa H, Aoyagi T, Morishima H, Matsuzaki M, Hamada M, Takeuchi T. Pepstatin, a new pepsin inhibitor produced by actinomycetes. J Antibiotics 1979; 23: 259–62
  • Marciniszyn J, Hartsuck J A, Tang J. Mode of inhibition of acid proteases by pepstatin. J Biol Chem 1976; 251: 7088–94
  • Rajagopalan T G, Stein W H, Moore S. The inactivation of pepsin by diazoacetylnorleucine methyl ester. J Biol Chem 1966; 241: 4295–7
  • Tang J. Specific and irreversible inactivation of pepsin by substratelike epoxides. J Biol Chem 1971; 246: 4510–7
  • Schwann T. Üeber das Wesen des Verdauungsprocesses. Mullers Archiv f Anat Physiol 1836; 90–138
  • Hammarsten O. Om mjölk-ystningen och de dervid verksamma fermenterna i magslemhinnan. Uppsala Läkare-förenings förhandlingar 1872; 8: 63–86
  • Langley JN. On the histology of mammalian gastric glands, and the relation of pepsin to the granules of the chief-cells. J Physiol 1882; 3: 267–91
  • Gottlieb E. Untersuchungen über die propepsinmengen im blut und harn. Skandin Archiv 1923; 56: 1–50
  • Sørensen S PL, Katschioni-Walther L, Linderstrøm-Lang K. Über die pepsin-spaltung, mit einer Notiz über die Indicatorfrage. Hoppe-Seyler's Zeitschrift f physiol Chemie 1928; 174: 251–77
  • Northrop JH. Crystalline pepsin. Science 1929; 69: 580
  • Northrop JH. Crystalline pepsin. I. Isolation and tests of purity. J General Physiol 1930; 13: 739–66
  • Northrop JH. Crystalline pepsin. II. General properties and experimental methods. J General Physiol 1930; 13: 767–80
  • Anson M L, Mirsky AE. The estimation of pepsin with hemoglobin. J General Physiol 1932; 16: 59–63
  • Seastone C V, Herriot RM. Immunological studies on pepsin and pepsinogen. J General Physiol 1937; 20: 797–806
  • Ryle A. The porcine pepsins and pepsinogens. Methods Enzymol 1970; 19: 316–36
  • Richmond V, Tang J, Wolf S, Trucco R E, Caputto R. Chromatographic isolation of gastricsin, the proteolytic enzyme from gastric juice with pH optimum at 3.2. Biochim Biophys Acta 1958; 29: 453
  • Seijffers M J, Segal H L, Miller LL. Separation of pepsin I, pepsin II A, pepsin II B, and pepsin III from human gastric mucosa. Am J Physiol 1963; 205: 1099–105
  • Chiang L, Sanchez-Chiang L, Mills J N, Tang J. Purification and properties of porcine gastricsin. J Biol Chem 1967; 242: 3098–102
  • Mills J N, Tang J. Molecular weight and amino acid composition of human gastricsin and pepsin. J Biol Chem 1967; 242: 3093–7
  • Tang J, Wolf S, Caputto R, Trucco RE. Isolation and crystallization of gastricsin from human gastric juice. J Biol Chem 1959; 234: 1174–8
  • Tang J, Mills J, Chiang L, de-Chiang L. Gastric pepsin and pepsin inhibitors. Comparative studies on the structure and specificity of human gastricsin, pepsin and zymogen. Ann N Y Acad Sci 1967; 140: 688–96
  • Samloff IM. Pepsinogens, pepsins, and pepsin inhibitors. Gastroenterology 1971; 60: 586–604
  • Samloff IM. Slow moving protease and the seven pepsinogens. Gastroenterology 1969; 57: 659–69
  • Matzku S, Rapp W. Purification of human gastric proteases by immuno-adsorbents: pepsinogen II-group. Biochim Biophys Acta 1976; 446: 30–40
  • Ichinose M, Miki K, Furihata C, et al. Radioimmunoassay of serum group I and group II pepsinogens in normal controls and patients with various disorders. Clin Chim Acta 1982; 126: 183–191
  • Samloff I M, Liebman WM. Radioimmunoassay of group I pepsinogens in serum. Gastroenterology 1974; 66: 494–502
  • Axelsson C K, Axelsen N H, Szecsi P B, Foltmann B. Determination of pepsin (EC 3.4.23.1) and gastricsin (EC 3.4.23.3) in gastric juice by rocket immunoelectrophoresis. Clin Chim Acta 1983; 129: 323–31
  • Samloff I M, Taggart RT. Pepsinogens, pepsins, and peptic ulcer. Clin Invest Med 1987; 10: 215–221
  • Samloff I M, Liebman W M, Panitch NM. Serum group I pepsinogens by radioimmunoassay in control subjects and patients with peptic ulcer. Gastroenterology 1975; 69: 83–90
  • Samloff I M, Stemmermann G N, Heilbrun L K, Nomura A. Elevated serum pepsinogen I and II levels differ as risk factors for duodenal ulcer and gastric ulcer. Gastroenterology 1986; 90: 570–6
  • Varis K, Samloff I M, Ihamäki T, Siurala M. An appraisal of tests for severe atrophic gastritis in relatives of patients with pernicious anemia. Dig Dis Sci 1979; 23: 187–91
  • Borch K, Axelsson C K, Halgreen H, Damkjajr-Nielsen M, Ledin T, Szecsi PB. The ratio of pepsinogen A to pepsinogen C: A sensitive test for atrophic gastritis. Scand J Gastroenterol 1989; 24: 870–6
  • Sipponen P, Samloff I M, Saukkonen M, Varis K. Serum pepsinogens I and II and gastric mucosal histology after partial gastrectomy. Gut 1985; 26: 1179–82
  • Szecsi P B, Dalgaard D, Stakemann G, Wagner G, Foltmann B. The concentration of pepsinogen C in human semen and the physiological activation of zymogen in the vagina. Biol Reprod 1989; 40: 653–9
  • Davidson H W, Watts C. Epitope-directed processing of specific antigen by B lymphocytes. J Cell Biol 1989; 109: 85–92
  • Gottschalk S, Waheed A, Schmidt B, Laidler P, von Figura K. Sequential processing of lysosomal acid phosphatase by cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase. EMBO J 1989; 8: 3215–9
  • Sawamura T, Shinmi O, Kishi N, et al. Analysis of big endothelin-1 digestion by cathepsin D. Biochem Biophys Res Commun 1990; 172: 883–9
  • Takaoka M, Hukumori Y, Shiragami K, Ikegawa R, Matsumura Y, Morimoto S. Proteolytic processing of porcine big endothelin-1 catalyzed by cathepsin D. Biochem Biophys Res Commun 1990; 173: 1218–23
  • Westley B R, May F EB. Oestrogen regulates cathepsin D mRNA levels in oetrogen responsive human breast cancer cells. Nucleic Acid Res 1987; 15: 3773–87
  • Westley B, Rochefort H. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell 1980; 20: 352–62
  • Capony F, Morisset M, Barrett A J, et al. Phosphorylation, glycosylation and proteolytic activity of the 52K estrogen-induced protein secreted by MCF7 cells. J Cell Biol 1987; 104: 253–62
  • Maudelonde T, Domergue J, Henquel C, Freiss G, et al. Tamoxifen treatment in-creases the concentration of 52K-cathepsin D and its precursor in breast cancer tissue. Cancer 1989; 63: 1265–70
  • Morisset M, Capony F, Rochefort H. The 52kDa estrogen-induced protein secreted by MCF7 cells is a lysosomal acidic protease. Biochem Biophys Res Commun 1986; 138: 102–9
  • Vignon F, Capony F, Chambon M, Freiss G, Garcia M, Rochefort H. Autocrine growth stimulation of the MCF7 breast cancer cells by the estrogen-regulated 52 K protein. Endocrinology 1986; 118: 1537–45
  • Garcia M, Salazar-Retana G, Pages A, et al. Distribution of the Mr 52,000 estrogen-regulated protein in benign breast diseases and other tissues by immunohistochemistry. Cancer Research 1986; 46: 3734–8
  • Rochefort H, Capony F, Cavalie-Barthez G, . Estrogen-regulated proteins and autocrine control of cell growth in breast cancer. Breast cancer: Origins, detection and treatment, NA. Rich, , et al. Martinus Nijhoff, Boston 1986; 57–68
  • Toh H, Ono M, Saigo K, Miyata T. Retroviral protease-like sequence in the yeast transposon TY 1. Nature 1985; 315: 691
  • Seelmeir S, Schmidt H, Turk V, von der Helm K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci USA 1988; 85: 6612
  • Moore M L, Bryan W M, Fakhoury S A, et al. Peptide subtrates and inhibitors of the HIV-1 protease. Biochem Biophys Res Commun 1989; 159: 420–5
  • Blumenstein J J, Copeland T D, Oroszlan S, Michejda CJ. Synthetic non-peptide inhibitors of HIV protease. Biochem Biophys Res Commun 1989; 163: 980–7
  • Des Jarlais R L, Seibel G L, Kunitz I D, et al. Structure-based design of non-peptide inhibitors specific for the human immunodeficiency virus 1 protease. Proc Nad Acad Sci USA 1990; 87: 6644–8
  • Kräusslich HG. Specific inhibitor of human immunodeficiency virus proteinase prevents the cytotoxic effects of a single-chain proteinase dimer and restores particle formation. J Virol 1992; 66: 567–72
  • de Solms S J, Giuliani E A, Guare J P, et al. Design and synthesis of HIV protease inhibitors. Variations of the carboxy terminus of the HIV protease inhibitor L-682,679. J Med Chem 1991; 34: 2852–7
  • Hui K Y, Manetta J V, Gygi T, et al. A rational approach in the search for potent inhibitors against HIV proteinase. FASEB J 1991; 5: 2606–10
  • Mitsuya H, Yarchoan R, Kageyama S, Broder S. Targeted therapy of human immunodeficiency virus-related disease. FASEB J 1991; 5: 2369–81
  • Babé LM, Pichuantes S, Craik CS. Inhibition of HIV protease activity by heterodimer formation. Biochem 1991; 30: 106–11
  • Overton H A, McMillan D J, Gridley S J, Brenner J, Redshaw S., Mills JS. Effect of two novel inhibitors of the human immunodeficiency virus protease on the maturation of the HIV gag and gag-pol polyproteins. Virology 1990; 179: 508–11
  • Ashorn P, McQuade T J, Thaisrivongs S, Tomasselli A G, Tarpley W G, Moss B. An inhibitor of the protease blocks maturation of human and simian immunodeficiency viruses and spread of infection. Proc Natl Acad Sci USA 1990; 87: 7472–6
  • Meuwissen S GM, Mullink H, Bosma A, . Immunocytochemical localization of pepsinogen I and II in the human stomach. Pepsinogens in Man. Clinical and genetic advances, J Kreuning, IM Samloff, JI. Rotter, AW. Eriksson, et al. Alan R. Liss, New York. 1985; 185–97
  • Varis KS. Peptic cells. Pepsinogens in man. Clinical and genetic advances, J Kreuning, IM Samloff, JI. Rotter, AW. Eriksson. Alan R. Liss, New York 1983; 177–84
  • Samloff I M, Townes PL. Electrophoretic heterogeneity and relationship of pepsinogens in human urine, serum, and gastric mucosa. Gastroenterology 1970; 58: 462–9
  • Axelsson C K, Axelsen N H, Svendsen PJ. Purification of pepsinogen I from human urine by means of DEAE-chromatography and isotachophoresis. Electrophoresis 1980; 1: 164–7
  • Szecsi P B, Halgeen H, Poulsen S, et al. Demonstration of pepsinogen C in human pancreatic islets. Gut 1987; 28: 1208–14
  • Ward P H, Contreras L, Maldonado M, Baeza H, Chiang L. Gastricsin and cathepsin D in normal and hypertrophic human prostates. J Urol 1982; 127: 1027–30
  • Reese J H, McNeal J E, Redwine E A, Samloff I M, Stamey TA. Differential distribution of pepsinogen II between the zones of the human prostate and the seminal vesicle. J Urol 1986; 136: 1148–52
  • Reid W A, Vongsorak L, Svasti J, Valler M J, Kay J. Identification of the acid proteinase in human seminal fluid as a gastricsin originating in the prostate. Cell Tissue Res 1984; 236: 597–600
  • Foltmann B, Szecsi P B, Tarasova N. Detection of proteases by clotting of casein after gel electrophoresis. Anal Biochem 1985; 146: 353–360
  • Samloff I, Liebman W. Purification and immunochemical characterization of group II pepsinogens in seminal fluid. Clin Exp Immunol 1972; 11: 405–14
  • Moriyama A, Kageyama T, Takahashi K, Sasaki M. Purification of Japanese minkey prostate acid protease zymogen and its identification as a pepsinogen C-like zymogen. J Biochem 1985; 98: 1255–1261
  • Pungercar J, Strukelj B, Gubensek F, Turk V, Kregar I. Complete primary structure of lamb preprochymosin dedused from cDNA. Nucleic Acid Res 1990; 18: 4602
  • Pungercar J, Strukelj B, Gubensek F, Turk V, Kregar I. Amino acid sequence of lamb prechymosin and its comparison to other chymosins. Structure and function of the aspartic proteinases. Genetics, structure, and mechanisms, B. Dunn. Plenum Press, New York/London 1992; 127–99
  • Foltmann B. General and molecular aspects of rennets. Cheese: Chemistry, physics and microbiology, P. Fox, Elsevier 1987; 33–61
  • Foltmann B. A review on prorennin an rennin. Compt Rend Trav Lab Carlsberg 1966; 35: 143–231
  • Baudys M, Erdene T G, Kostka V, Pavlik M, Foltmann B. Comparison between prochymosin and pepsinogen from lamb and calf. Comp Biochem Physiol 1988; 89B: 385–91
  • Kolmer M, Örd T, Alhonen L, et al. Assigment of human prochymosin pseudogene to chromosome 1. Genomics 1991; 10: 496–8
  • Örd T, Kolmer M, Villems R, Saarma M. Structure of the human genomic region homologous to the bovine prochymosin-encoding gene. Gene 1990; 91: 241–6
  • Örd T, Kolmer M, Jänne J, Willems R, Saarma M. Structure and chromosomal localization of the human prochymosin pseudogene. Structure and function of the aspartic proteinases. Genetics, structure, and mechanisms., B. Dunn. Plenum Press, New York/London 1992; 121–6
  • Barrett AJ. Cathepsin D and other carboxyl proteinases. Proteinases in mammalian cells and tissues, AJ. Barrett. Elsevier, Amsterdam 1977; 209–48
  • Blum J, Fiani M, Stahl P. Localization of cathepsin D in endosomes: characterization and biological importance. Structure and function of the aspartic proteinases. Genetics, structure, and mechanisms, B. Dunn. Plenum Press, New York-London 1992; 281–7
  • Samloff I M, Taggart R T, Shiraishi T, et al. Slow moving proteinase. Isolation, characterization and immuno-histochemical localization in gastric mucosa. Gastroenterology 1987; 93: 77–84
  • Foltmann B. Comments on the nomenclature os aspartic preoteinases. Aspartic proteinases and their inhibitors, V. Kostka. Walter de Gruyter & Co, Berlin 1985; 19–26
  • Foltmann B, Tarasova N I, Szecsi PB. Methods for detection of proteinases: Electrophoretic and immunological comparison of aspartic proteinases of different origins. Aspartic proteinases and their inhibitors, V. Kostka. Walter de Gruyter & Co, Berlin. 1985; 491–507
  • Lapresle C. Rabbit cathepsin D and E. Tissue Proteinases, AJ. Barrett, JT. Dingle. North-Holland Publishing Co., Amsterdam. 1971; 135–50
  • Lapresle C, Webb T. The purification and properties of a proteolytic enzyme, rabbit cathepsin E, and further studies on rabbit cathepsin D. Biochem J 1962; 84: 455–62
  • Barkholt V. Amino acid sequence of endothiapepsin. Eur J Biochem 1987; 167: 327–38
  • Cunningham A, Wang H, Jones S R, et al. Amino acid sequence of penicillo-pepsin. Myxobaxter AL-1 protease II and Staphylococcus aureus protease fragment and homology with pepsin and chymosin. Can J Biochem 1976; 54: 902–14
  • Sepulveda P, Jackson K W, Tang J. The amino terminal sequence of acid proteases - human pepsin and gastric-sin and the protease of Rhizopus chinensis. Biochem Biophys Res Commun 1975; 63: 1106–12
  • Hiramatsu R, Aikawa J, Horinouchi S, Beppu T. Secretion by yeast of the zymogen form of Mucor rennin, an aspartic proteinase of Mucor pusillus, and its conversion to the mature form. J Biol Chem 1989; 264: 16862–6
  • Dreyer T, Halkjaer B, Svendsen I, Ottesen M. Structure and properties of proteinase A from Saccharomyces carls-bergenisis and Saccharomyces cerevi-siae. Aspartic proteinases and their inhibitors, V. Kostka. Walter de Gruyter, Berlin/New York 1985; 41–4
  • Matsubara H, Feder J. Other bacterial, mold, and yeast proteases. The enzymes, PD. Boyer. Academis Press, New York 1971; 721–49
  • Enzyme nomenclature. Recommendations of the nomenclature committee of the International Union of Biochemistry. Academic Press, New York 1978; 1979, 332–9
  • Doi E, Shibata D, Matoba T, Yonezawa D. Characterization of pepstatin-sensitive acid protease in resting rice seeds. Agr Biol Chem 1980; 44: 741–7
  • Belozersky M A, Sabakanova S T, Dunaevsky YE. Aspartic proteinase from wheat seeds: Isolation, properties and action on gliadin. Planta 1989; 177: 321–6
  • Morris P C, Miller R C, Bowles DJ. Endopeptidase activity in dry harvest-ripe wheat and barley grains. Plant Sci 1985; 39: 121–4
  • Rodigo I, Vera P, Conejero V. Degradation of tomato pathogenesis-related proteins by an endogenous 37 kDa aspartyl endoproteinase. Eur J Biochem 1989; 184: 663–9
  • Inagami T, Misono K, Chang J J, Takii Y, Dykes C. Renin and general aspartyl proteases: Differences and similarities in structure and function. Aspartic proteinases and their inhibitors, V. Kostka. Walter de Gruyter, Berlin/New York 1985; 319–37
  • Graves M. Human immunodeficiency virus proteinase: Now, then, what's next?. Structure and function of the aspartic proteinases. Genetics, structure, and mechanisms, B. Dunn. Plenum Press, New York/London 1992; 395–405
  • Kräusslich H-G, Oroszlan S, Wimmer E. Viral proteinases as targets for chemotherapy. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989; 1–287
  • Pearl LH. Retroviral proteases. Maturation and morphogenesis. Stockton Press, New York 1990; 1–180
  • Faust P L, Kornfeld S, Chirgwin JM. Cloning and sequence analysis of cDNA for human cathepsin D. Proc Natl Acad Sci USA 1985; 82: 4910–4
  • Tarasova N I, Szecsi P B, Foltmann B. An aspartic proteinase from human erythrocytes is immunochemically indistinguishable from a non-pepsin, electrophoretically slow moving proteinase from gastric mucosa. Biochim Biophys Acta 1986; 880: 96–100
  • Azuma T, Pals G, Mohandas T K, Couvreur J M, Taggart R T, Human gastric cathepsin E. Predicted sequence, localization to chromosome 1, and sequence homology with other aspartic proteinases. J Biol Chem 1989; 264: 16748–53
  • Kobayashi H, Sekibata S, Shibuya H, Yoshida S, Kusabe I, Murakami K. Cloning and sequence analysis of cDNA for Irpex lacteus aspartic proteinase. Agr Biol Chem 1989; 53: 1927, 33
  • Meitner P, Kassell B. Bovine pepsinogens and pepsins. A series of zymogens and enzymes that differ in organic phosphate content. Biochem J 1971; 121: 249–56
  • Kageyama T, Takahashi K. The carbohydrate moiety of Japanese monkey pepsinogens. Its composition and site of attachmanet to protein. Biochem Biophys Res Commun 1977; 74: 789–95
  • Takahashi T, Tang J. Amino acid sequence of porcine spleen cathepsin D light chain. J Biol Chem 1983; 258: 6435–43
  • Mechler B, Müller M, Müller H, Meussdoerffer F, Wolf DH. In vivo biosynthesis of the vacuolar proteinases A and B in the yeast Saccha-romyces cerevisiae. J Biol Chem 1982; 257: 11203–6
  • Evers M PJ, Zelle B, Bebelman J P, et al. Nucleotide sequence comparison of five human pepsinogen A (PGA) genes; concerted evolution of the PGA multigene family. Genomics 1990; 4: 232–239
  • Blundell T L, Sewell B T, McLachlan AD. Four-fold structural repeat in the acid proteases. Biochim Biophys Acta 1979; 580: 24–31
  • Tang J, James M NG, Hsu I N, Jenkins J A, Blundell TL. Structural evidence for gene duplication in the evolution of the acid proteases. Nature 1978; 271: 618–21
  • Davies DR. The structure and function of the aspartic proteinases. Ann Rev Biophys Biophys Chem 1990; 19: 189–215
  • Weber IT. Comparison of the crystal structures and intersubunit interactions of human immunodeficiency and Rous sarcoma virus proteases. J Biol Chem 1990; 265: 10492–6
  • Navia M A, McKeever BM. A role for the aspartyl protease from the human immunodeficiency virus type 1 (HIV-1) in the orchestration of virus assembly. Ann N Y Acad Sci 1990; 616: 73–85
  • Graves M C, Lim J J, Heimer E P, Kramer RA. An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity. Proc Natl Acad Sci USA 1988; 85: 2449
  • Kohl N E, Emini E A, Schleif W A, et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci USA 1988; 85: 4686–90
  • Bernal J D, Crowfoot D. X-ray photographs of crystalline pepsin. Nature 1934; 133: 794–5
  • Astbury W T, Lomax R. X-ray photographs of crystalline pepsin. Nature 1934; 133: 795
  • Andreeva NS. Structure of pepsin. Intrinsic symmetry of the enzyme molecule and possible pathways of evolution of aspartate proteinases. Mol Biol (Moscow) 1984; 19: 218–24
  • Andreeva N S, Zdanov A S, Gustchina A E, Fedorov AA. Structure of ethanol-inhibited porcine pepsin at 2-Å resolution and binding of the methyl ester of phenylalanyl-diiodo-thyrosine to the enzyme. J Biol Chem 1984; 259: 11353–65
  • James M NG, Sielecki AR. Structure and refinement of penicillopepsin at 1.8 Å resolution. J Mol Biol 1983; 163: 299–361
  • Suguna K, Bott R R, Padlan E A, et al. Structure and refinement at 1.8 Å resolution of the aspartic proteinase from Rhizopus chinensis. J Mol Biol 1987; 196: 877–900
  • Bott R R, Subramanian E, Davies DR. Three-dimentional structure of the complex of Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5 Å resolution. Biochem 1982; 21: 6956–62
  • Cooper J, Foundling S, Hemmings A, et al. The structure of a synthetic pepsin inhibitor complexed with endo-thiapepsin. Eur J Biochem 1987; 169: 215–21
  • Veerapandian B, Cooper J B, Sali A, Blundell TL. X-ray analyses of aspartic proteinases. III Three-dimensional structure of endothiapepsin complexed with a transition-state isostere inhibitor of renin at 1.6 A resolution. J Mol Biol 1990; 216: 1017–29
  • Sali A, Veerapandian B, Cooper J B, Foundling S I, Hoover D J, Blundell TL. High resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme. EMBO J 1989; 8: 2179–88
  • Sielecki A R, Fedorov A A, Boodhoo A, Andreeva N S, James M NG. Molecular and crystal structure of monoclinic porcine pepsin refined at 1.8 Å resolution. J Mol Biol 1990; 214: 143–70
  • Sielecki A R, Fujinaga M, Read R J, James M NG. Refined structure of porcine pepsinogen at 1.8 Å resolution. J Mol Biol 1991; 219: 671–92
  • Hartsuch J A, Remington SJ. The 18th Linderstr0m-Lang Conference Proceedings. Elsinore, Denmark 1988
  • Sielecki A R, Hayakawa K, Fujinaga M, et al. Structure of recombinant human renin, a target for cardiovascular-active drugs, at 2.5 Å resolution. Science 1989; 243: 1346–51
  • Dhanaraj V, Dealwis C G, Frazao C, et al. X-ray analysis of peptide-inhibitor complexes define the structural basis of specificity for human and mouse renins. Nature 1992; 446: 466–72
  • Newman M, Safro M, Frazao C, et al. X-ray analyses of aspartic proteinases. IV. Structure and refinement at 2.2 Å resolution of bovine chymosin. J Mol Biol 1991; 221: 1295–309
  • Gilliland G L, Winborne E L, Nachman J, Wlodawer A. The three-dimensional structure of recombinant bovine chymosin at 2.3 Å resolution. Proteins 1990; 8: 82–101
  • Watson F, Wood S P, Tickle I J, et al. The 18th Linderstr0m-Lang Conference Proceedings. ElsinoreDenmark 1988
  • Miller M, Schneider J, Sathyanarayana B K, et al. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 Å resolution. Science 1989; 246: 1149–52
  • Navia M A, Fitzgerald P MD, McKeever B M, et al. Three-dimentional structure of aspartyl protease from human immuno-deficiency virus HIV-1. Nature 1989; 337: 615–20
  • Lapatto R, Blundell T L, Hemmings A, et al. X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes. Nature 1989; 342: 299–302
  • James M NG, Sielecki AR. Aspartic proteinases and their catalytic pathway. Biological macromole-cules and assemblies.: Active sites of enzymes, FA. Jurnak, A. McPherson. John Wiley & Sons, New York 1987; Vol 3: 413–82
  • Blundell T L, Jenkins J A, Sewell B T, et al. X-ray analysis of aspartic proteinases. The three-dimensional structure at 2.1 Å resolution of Endo-thiapepsin. J Mol Biol 1990; 211: 919–41
  • Cooper J B, Khan G, Taylor G, Tickle I J, Blundell TL. X-ray analyses of aspartic proteinases. Three-dimentional structure of the hexagonal crystal form of porcine pepsin at 2.3 Å resolution. J Mol Biol 1990; 214: 199–222
  • Blundell T L, Lapatto R, Wilderspin A F, et al. The 3-D structure of HIV-1 proteinase and the design of antiviral agents for the treatment of AIDS. Trends Biochem Sci 1990; 15: 425–30
  • Wlodawer A, Miller M, Jaskolski M, et al. Conserved folding in retoviral pro-teases: crystal structure of a synthetic HIV-1 protease. Science 1989; 245: 616
  • Pearl L, Blundell TL. The active site of aspartic proteinases. FEBS Lett 1984; 174: 96–101
  • Sampath-Kumar P S, Fruton JS. Studies on the extended active sites of acid proteinases. Proc Natl Acad Sci USA 1974; 71: 1070–2
  • Clement GE. Catalytic activity of pepsin. Prog in Bioorg Chem 1973; 2: 177–238
  • Fruton JS. Pepsin. The Enzymes, PD. Boyer. Academic Press, New York 1971; Vol III.: 120–64
  • Green D, Rivetna M. Substrate specificity of human renin: The effect of substitutions at the amino terminus and P3 position of the substrate. Structure and function of the aspartic proteinases. Genetics, structure, and mechanisms, B. Dunn. Plenum Press, New York/London 1992; 383–6
  • Nedjar S, Humbert G, le Deaut J Y, Linden G. Specificity of chymosin on immobilized bovine β-chain insulin. Int J Biochem 1991; 23: 377–81
  • Drøhse H B, Foltmann B. Specificity of milk-clotting enzymes towards bovine kappa-casein. Biochim Biophys Acta 1989; 995: 221–4
  • Skalka AM. Retroviral proteases: first glimpses at the anatomy of a processing machine. Cell 1989; 56: 911–3
  • Darke P L, Nutt R F, Brady S F, et al. HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins. Biochem Biophys Res Commun 1988; 156: 297–303
  • Marciniszyn J, Huang J S, Hartsuck J A, Tang J. Mechanism of intramolecular activation of pepsinogen. J Biol Chem 1976; 251: 7095–102
  • Foltmann B. On the amino acid composition of prorennin, rennin and of peptides liberated during the activation of prorennin. Compt Rend Trav Lab Carlsberg 1964; 34: 275–86
  • Foltmann B. Purification, structure and activation of pepsinogens. Pepsinogens in man. Clinical and genetic advances, J Kreuning, IM Samloff, JI Rotter, AW. Eriksson. Alan R. Liss, New York 1985; 1–13
  • Foltmann B. Activation of human pepsinogens. FEBS Lett 1988; 241: 69–72
  • Pedersen V B, Christensen K A, Foltmann B. Investigations on the activation of bovine prochymosin. Eur J Biochem 1979; 94: 573–80
  • Foltmann B, Jensen A. Human progastricsin Analysis of intermediates during activation into gastricsin and determination of amino acid sequence of the propart. Eur J Biochem 1982; 128: 63–70
  • Keilova H, Kostka V, Kay J. The first step in the activation of chicken pepsinogen is similar to that of prochymosin. Biochem J 1977; 167: 855–8
  • Kageyama T, Takahashi K. Isolation of an activation intermediate and determination of the amino acid sequence of the activation segment of human pepsinogen A. J Biochem (Tokyo) 1980; 88: 571–82
  • Christensen K A, Pedersen V B, Foltmann B. Identification of an enzymatically active intermediate in the activation of porcine pepsinogen. FEBS Lett 1977; 76: 214–8
  • Do Y S, Shinagawa T, Tam H, Inagami T, Hsieh WA. Characterization of pure human renal renin. Evidence for a subunit structure. J Biol Chem 1987; 262: 1037–43
  • Derkx F HM, Schalekamp P A, Schalekamp A DH. Two-step prorenin-renin conversion. Isolation of an intermediary form of activated prorenin. J Biol Chem 1987; 262: 2472–7
  • Yoshinaka Y, Katoh I, Adachi M. Biochemical characterization of retroviral protease. Proteases of retroviruses, V. Kostka. Walter de Gruyter, Berlin New York 1989; 35–47
  • Göttlinger H D, Sodroski J G, Haseltine WA. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1989; 86: 5781–5
  • de Bouck M C, Gormiak J G, Strickler J E, Meek T D, Metcalf B W, Rosenberg M. Human immuno-deficiency virus protease expressed in Escherichia coli exhibits auto-processing and specific maturation of the gag precursor. Proc Natl Acad Sci USA 1987; 84: 8903
  • Giam C Z, Boros I. In vivi and in vitro autoprocessing of human immunodeficiency virus protease expressed in Escherichia coli. J Biol Chem 1988; 263: 14617–20
  • Tsukagoshi N, Ando Y, Tomita Y, et al. Nucleotide sequence and expression in Escherichia coli of cDNA of swine pepsinogen: involment of the amino-terminal portion of the activation peptide segment in restoration of the functional protein. Gene 1988; 65: 285–92
  • Kageyama T, Tanabe K, Koiwai O. Structure and development of rabbit pepsinogens: Stage-specific zymogens, nucleotide sequences of cDNAs, molecular evolution, and gene expression during development. J Biol Chem 1990; 265: 17031–8
  • Yakabe E, Tanji M, Ichinose M, et al. Purification, characterization, and amino acid sequences of pepsinogens and pepsins from the eosophageal mucosa of bullfrog. J Biol Chem 1991; 266: 22436–43
  • Hayashi K, Agata K, Mochii M, Yasugi S, Eguchi G, Mizuno T. Molecular cloning and the nucleotide sequence of cDNA for embryonic chicken pepsinogen: Phylogenetic relationship with prochymosin. J Biochem 1988; 103: 290–6
  • Evers M PJ, Zelle B, Bebelman J P, et al. Cloning and sequencing of Rhesus monkey pepsinogen A cDNA. Gene 1988; 65: 179–85
  • Taggart R T, Mohandas T K, Shows T B, Bell GI. Variable numbers of pepsinogen genes are located in the centromeric region of human chromosome 11 and determine the high-frequency electrophoretic polymorphism. Proc Natl Acad Sci USA 1985; 82: 6240–4
  • Ishihara T, Ichihara Y, Hayano T, et al. Primary structure and transcriptional regulation of rat pepsinogen C gene. J Biol Chem 1989; 264: 10193–9
  • Ichihara Y, Sogawa K, Morohashi K I, Fujii-Kuriyama Y, Takahashi K. Nucleotide sequence of a nearly full-length cDNA coding for pepsinogen of rat gastric mucosa. Eur J Biochem 1986; 161: 7–12
  • Kageyama T, Tanabe K, Koiwai O. Development-dependent expression of isozymogens of monkey pepsinogens and structural differences between them. Eur J Biochem 1991; 202: 205–15
  • Hayano T, Sogawa K, Ichihara Y, Fuji-Kuriyama Y, Takahashi K. Primary structure of human pepsinogen C gene. J Biol Chem 1988; 263: 1382–5
  • Taggart R T, Cass L G, Mohandas T K, et al. Human pepsinogen C (progas-tricsin). Isolation of cDNA clones, localization to chromosome 6, and sequence homology with pepsinogen A. J Biol Chem 1989; 264: 375–9
  • Birch N P, Loh YP. Cloning, sequence and expression of rat cathepsin D. Nucleic Acid Res 1990; 18: 6445–6
  • Diedrich J F, Staskus K A, Retzel E F, Haase AT. Nucleotide sequence of cDNA encoding mouse cathepsin D. Nucleic Acid Res 1990; 18: 7184
  • Bumham C E, Hawelu-Johnson C L, Frank B M, Lynch KR. Molecular cloning of rat renin cDNA and its gene. Proc Natl Acad Sci USA 1987; 84: 5605–9
  • Panthier J J, Rougeon F. Kidney and submaxillary gland renins are encoded by two non-allelic genes in Swiss mice. EMBO J 1983; 2: 675–8
  • Imai T, Miyazaki H, Hirose S, et al. Cloning and sequence analysis of cDNA for human renin precursor. Proc Natl Acad Sci USA 1983; 80: 7405–9
  • Moir D, Mao J I, Schumm J W, Vovis G F, Alford B L, Taunton-Rigby A. Molecular cloning and characterization of double-stranded cDNA coding for bovine chymosin. Gene 1982; 19: 127–38
  • Harris T J, Lowe P A, Lyons A, et al. Molecular cloning and nucleotide sequence of cDNA coding for calf preprochymosin. Nucleic Acid Res 1982; 10: 2177–87
  • Nishimori K, Kawaguchi Y, Hidaka M, Uozumi T, Beppu T. Nucleotide sequence of calf prorennin cDNA cloned in Escherichia coli. J Biochem, 91: 1085, 1088
  • Gray G L, Hayenga K, Cullen D, Wilson L J, Norton S. Primary structure of Mucor meihei aspartyl protease: evidence for a zymogen intermediate. Gene 1986; 48: 41–53
  • Boel E, Bech A-M, Randrup K, Draeger B, Fiil N P, Foltmann B. Primary structure of a precursor to the aspartic proteinase from Rhizomucor meihei shows that the enzyme is synthesized as a zymogen. Proteins 1986; 1: 363–9
  • Horiuchi H, Yanai K, Okazaki T, Takagi M, Yano K. Isolation and sequencing of a genomic clone encoding aspartic proteinase of Rhizopus niveus. J Bacteriol 1988; 170: 272–8
  • Chen Z, Koelsch G, Han H P, et al. Recombinant rhizopuspepsinogen. Expression, purification, and activation properties of recombinant rhizo-puspepsinogens. J Biol Chem 1991; 266: 11718–25
  • Lott T J, Boiron P, Page L S, Benson J, Reiss E. Nucleotide sequence of the Candida albicans aspartyl proteinase gene. Nucleic Acid Res 1989; 17: 1779
  • Togni G, Sanglard D, Falchetto R, Monod M. Isolation and nucleotide sequence of the extracellular acid protease gene (ACP) from the yeast Candida tropicalis. FEBS Lett 1991; 286: 181–5
  • MacKay V L, Welch S K, Insley M Y, et al. The Saccharomyces cerevisiae BAR1 gene encodes an exported protein with homology to pepsin. Proc Natl Acad Sci USA 1988; 85: 55–59
  • Berka R M, Ward M, Wilson L J, et al. Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori. Gene 1990; 86: 153–62
  • Ratner L, Haseltine W, Patarca R, et al. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 1985; 313: 277–84
  • Kumar P, Hui H, Kappes J C, et al. Molecular characterization of an attenuated human immunodeficiency virus type 2 isolate. J Virol 1990; 64: 890–901
  • Malik K T, Even J, Karpas A. Molecular cloning and complete nucleotide sequence of an adult T cell leukaemia virus / human T cell leukaemia virus type I (ATLV(HTLV-I) isolate of caribbian origin: Relationship to other members of the ATLV/HTLV-I subgroup. J Gen Virol 1988; 69: 1695–710
  • Shimotohno K, Takahashi Y, Shimizu N, et al. Complete nucleotide sequence of an infectious clone of human T-cell leukemia type II: an open reading frame for the protease gene. Proc Natl Acad Sci USA 1985; 82: 3101–5
  • Hayano T, Sogawa K, Ichihara Y, Fujii Kuriayma Y, Takahashi K. Close linkage og human chromosomal pepsinogen A genes. Biochem Biophys Res Commun 1986; 138: 289–96
  • Evers M PJ, Zelle B, Peeper D S, et al. Molecular cloning of a pair of human pepsinogen A genes which differ by a GluLys mutation in the activation peptide. Hum Genet 1987; 77: 182–7
  • Zelle B, Evers M PJ, Groot P C, et al. Genomic structure and evolution of the human pepsinogen A multigene family. Hum Genet 1988; 78: 79–82
  • Sogawa K, Fujii Kuriayma Y, Mizukami Y, Ichihara Y, Takahashi K. Primary structure of human pepsinogen gene. J Biol Chem 1983; 258: 5306–15
  • Pals G, Azuma T, Mohandas T K, et al. Human pepsinogen C (progastricsin) polymorphism: Evidence for a single locus located at 6p21.1-pter. Genomics 1989; 4: 137–45
  • Miyazaki H, Fukamizu A, Hirose S, et al. Structure of the human renin gene. Proc Natl Acad Sci USA 1984; 81: 5999–6003
  • Hobart P M, Fogliano M, O'Connor B A, Schaeffer I M, Chirgwin JM. Human renin gene: Structure and sequence analysis. Proc Natl Acad Sci USA 1984; 81: 5026–30
  • Shine J, Hardman J A, Hort Y J, et al. Structure of the human renin gene. Trans Ass Am Physicians 1984; 97: 63–9
  • Hardman J A, Hort Y J, Catanzaro D F, et al. Primary structure of the human renin gene. DNA 1984; 3: 457–68
  • Soubrier F, Panthier J-J, Houot A-M, Rougeon F, Corvol P. Segmental homology between the promotor region of the human renin gene and the mouse ren 1 and ren 2 promotor regions. Gene 1986; 41: 85–92
  • Redecker B, Heckendorf B, Grosch H-W, Mersmann G, Hasilik A. Molecular organization of the human cathepsin D gene. DNA Cell Biol 1991; 10: 423–31
  • Hidaka M, Sasaki K, Uozumi T, Beppu T. Cloning and structural analysis of the calf prochymosin gene. Gene 1986; 43: 197–203
  • Nakai H, Byers M G, Shows T B, Taggart RT. Assignment of the pepsinogen gene complex (PgA) to human chromosome region 11q13 by in situ hybridization. Cytogenet Cell Genet 1986; 43: 215–7
  • Szecsi P B, Kock C, Foltmann B. Seminal pepsinogen C is not identical with though very similar to gastric pepsinogen C. FEBS Lett 1988; 238: 101–4
  • Xie S C, Low B G, Nagel R J, et al. Identification of the major pregnancy-specific antigens of cattle and sheep as inactive members of the aspartic proteinase family. Proc Natl Acad Sci USA 1991; 88: 10247–51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.