Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 50, 2020 - Issue 2
432
Views
17
CrossRef citations to date
0
Altmetric
Synthetic Communications Reviews

Synthesis, bioevaluation and molecular docking study of new piperazine and amide linked dimeric 1,2,3-triazoles

, , , , , & show all
Pages 271-288 | Received 07 Jun 2019, Published online: 27 Nov 2019

References

  • Pieroni, M.; Wan, B.; Zuliani, V.; Franzblau, S. G.; Costantino, G.; Rivara, M. Discovery of Antitubercular 2,4-Diphenyl-1H-Imidazoles from Chemical Library Repositioning and Rational Design. Eur. J. Med. Chem 2015, 100, 44–49. and references cited theirin. DOI: 10.1016/j.ejmech.2015.05.048.
  • Wang, L.; Liu, J.; Chin, D. P. Progress in Tuberculosis Control and the Evolving Public-Health System in China. Lancet. 2007, 369, 691–696. DOI: 10.1016/S0140-6736(07)60316-X.
  • Global Tuberculosis Report 2016. World Health Organization. http://apps.who.int/medicinedocs/en/d/Js23098en.
  • Mahajan, R. Bedaquiline: First FDA-Approved Tuberculosis Drug in 40 Years. Int. J. App. Basic Med. Res. 2013, 3, 1–2. DOI: 10.4103/2229-516X.112228.
  • Takagi, Y.; Hattori, H.; Adachi, H.; Takakura, S.; Horii, T.; Chindamporn, A.; Kitai, H.; Tanaka, R.; Yaguchi, T.; Fukano, H.; et al. Genotypes of Candida albicans Involved in Development of Candidiasis and Their Distribution in Oral Cavity of Non-Candidiasis Individuals. Med. Mycol. 2011, 52, 315–324. DOI: 10.3314/mmj.52.315.
  • Tuberculosis survivors at risk of fungal infections. World Health Organization. http://www.who.int/bulletin/releases/NFM1211EN.pdf.
  • Fraser, V. J.; Jones, M.; Dunkel, J.; Storfer, S.; Medoff, G.; Dunagan, W. C. Candidemia in a Tertiary Care Hospital: epidemiology, Risk Factors, and Predictors of Mortality. Clin. Infect. Dis. 1992, 15, 414–421. DOI: 10.1093/clind/15.3.414.
  • Osman, N. M.; Gomaa, A. A.; Sayed, N. M.; Abd el Aziz, A. A. Microarray Detection of Fungal Infection in Pulmonary Tuberculosis. Egypt J. Chest. Dis. Tuberculosis. 2013, 62, 151–157. DOI: 10.1016/j.ejcdt.2013.02.002.
  • Pfaller, M. A.; Diekema, D. J. Epidemiology of Invasive Candidiasis: A Persistent Public Health Problem. Clin. Microbiol. Rev. 2007, 20, 133–163. DOI: 10.1128/CMR.00029-06.
  • Wiid, I.; Seaman, T.; Hoal, E. G.; Benade, A. J.; Van Helden, P. D. Total Antioxidant Levels Are Low during Active TB and Rise with anti-Tuberculosis Therapy. IUBMB Life. 2004, 56, 101–106. DOI: 10.1080/15216540410001671259.
  • Kinsella, J. E.; Frankel, E.; German, B.; Kanner, J. Possible Mechanisms for the Protective Role of Antioxidants in Wine and Plant Foods. Food Technol. 1993, 47, 85–89.
  • Brawn, R. A.; Welzel, M.; Lowe, J. T.; Panek, J. S. Regioselective Intramolecular Dipolar Cycloaddition of Azides and Unsymmetrical Alkynes. Org. Lett. 2010, 12, 336–339. DOI: 10.1021/ol902681t.
  • Kolb, H. C.; Sharpless, K. B. The Growing Impact of Click Chemistry on Drug Discovery. Drug Discov. Today. 2003, 8, 1128–1137. DOI: 10.1016/S1359-6446(03)02933-7.
  • Dheer, D.; Singh, V.; Shankar, R. Medicinal Attributes of 1,2,3-Triazoles: Current Developments. Bioorg. Chem. 2017, 71, 30–54. and references cited theirin. DOI: 10.1016/j.bioorg.2017.01.010.
  • Ali, A. A.; Gogoi, D.; Chaliha, A. K.; Buragohain, A. K.; Trivedi, P.; Saikia, P. J.; Gehlot, P. S.; Kumar, A.; Chaturvedi, V.; Sarma, D. Synthesis and Biological Evaluation of Novel 1,2,3-Triazole Derivatives as anti-Tubercular Agents. Bioorg. Med. Chem. Lett. 2017, 27, 3698–3703. DOI: 10.1016/j.bmcl.2017.07.008.
  • Boechat, N.; Ferreira, V. F.; Ferreira, S. B.; Ferreira, M. d L. G.; da Silva, F. d C.; Bastos, M. M.; Costa, M. d S.; LourençO, M. C. S.; Pinto, A. C.; Krettli, A. U.; et al. Novel 1,2,3-Triazole Derivatives for Use against Mycobacterium tuberculosis H37Rv (ATCC 27294) Strain. J. Med. Chem. 2011, 54, 5988–5999. DOI: 10.1021/jm2003624.
  • Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. DOI: 10.1002/asia.201100432.
  • Lima-Neto, R. G.; Cavalcante, N. N. M.; Srivastava, R. M.; Mendonca, F. J. B.; Wanderley, A. G.; Neves, R. P.; dos Anjos, J. V. Synthesis of 1,2,3-Triazole Derivatives and in Vitro Antifungal Evaluation on Candida Strains. Molecules. 2012, 17, 5882–5892. DOI: 10.3390/molecules17055882.
  • Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P. J.; Kumar, V. Azide-Alkyne Cycloaddition en Route to 1H-1,2,3-Triazole-Tethered 7-Chloroquinoline-Isatin Chimeras: Synthesis and Antimalarial Evaluation. Eur. J. Med. Chem. 2013, 62, 590–596. DOI: 10.1016/j.ejmech.2013.01.032.
  • Jordao, A. K.; Afonso, P. P.; Ferreira, V. F.; de Souza, M. C.; Almeida, M. C.; Beltrame, C. O.; Paiva, D. P.; Wardell, S. M.; Wardell, J. L.; Tiekink, E. R. T.; et al. Antiviral Evaluation of N-Amino-1,2,3-Triazoles against Cantagalo Virus Replication in Cell Culture. Eur. J. Med. Chem. 2009, 44, 3777–3783. DOI: 10.1016/j.ejmech.2009.04.046.
  • Pokhodylo, N.; Shyyka, O.; Matiychuk, V. Synthesis of 1,2,3-Triazole Derivatives and Evaluation of Their Anticancer Activity. Sci. Pharm. 2013, 81, 663–676. DOI: 10.3797/scipharm.1302-04.
  • Kelley, J. L.; Koble, C. S.; Davis, R. G.; Ed McLean, W.; Soroko, F. E.; Cooper, B. R. 1-(Fluorobenzyl)-4-Amino-1H-1,2,3-Triazolo[4,5-c]Pyridines: Synthesis and Anticonvulsant Activity. J. Med. Chem. 1995, 38, 4131–4134. DOI: 10.1021/jm00020a030.
  • Deshmukh, T. R.; Khare, S. P.; Krishna, V. S.; Sriram, D.; Sangshetti, J. N.; Khedkar, V. M.; Shingate, B. B. Synthesis of 1,2,3-Triazole Incorporated Monocarbonyl Curcumin Analogues as Potent Antitubercular, Antifungal and Antioxidant Agents. Chem. Biol. Interface. 2019, 1, 59–70.
  • Bochis, R. J.; Chabala, J. C.; Harris, E.; Peterson, L. H.; Barash, L.; Beattie, T.; Brown, J. E.; Graham, D. W.; Waksmunski, F. S.; Tischler, M.; et al. Benzylated 1,2,3-Triazoles as Anticoccidiostats. J. Med. Chem. 1991, 34, 2843–2852. DOI: 10.1021/jm00113a024.
  • McNair, T. J.; Wibin, F. A.; Hoppe, E. T.; Schmidt, J. L.; de Peyster, F. A. Antitumor Action of Several New Piperazine Derivatives Compared to Certain Standard Anticancer Agents. J. Surg. Res. 1963, 3, 130–136. DOI: 10.1016/S0022-4804(63)80014-1.
  • Ramani, A. V.; Monika, A.; Indira, V. L.; Karyavardhi, G.; Venkatesh, J.; Jeankumar, V. U.; Manjashetty, T. H.; Yogeeswari, P.; Sriram, D. Synthesis of Highly Potent Novel anti-Tubercular Isoniazid Analogues with Preliminary Pharmacokinetic Evaluation. Bioorg. Med. Chem. Lett. 2012, 22, 2764–2767. DOI: 10.1016/j.bmcl.2012.02.091.
  • Upadhayaya, R. S.; Sinha, N.; Jain, S.; Kishore, N.; Chandra, R.; Arora, S. K. Optically Active Antifungal Azoles: synthesis and Antifungal Activity of (2R,3S)-2-(2,4-Difluorophenyl)-3-(5-{2-[4-Aryl-Piperazin-1-yl]-Ethyl}-Tetrazol-2-yl/1-yl)-1-[1,2,4]-Triazol-1-yl-Butan-2-ol. Bioorg. Med. Chem. 2004, 12, 2225–2238. DOI: 10.1016/j.bmc.2004.02.014.
  • Mir, F.; Shafi, S.; Zaman, M. S.; Kalia, N. P.; Rajput, V. S.; Mulakayala, C.; Mulakayala, N.; Khan, I. A.; Alam, M. S. Sulfur Rich 2-Mercaptobenzothiazole and 1,2,3-Triazole Conjugates as Novel Antitubercular Agents. Eur. J. Med. Chem. 2014, 76, 274–283. DOI: 10.1016/j.ejmech.2014.02.017.
  • Anand, A.; Naik, R. J.; Revankar, H. M.; Kulkarni, M. V.; Dixit, S. R.; Joshi, S. D. A Click Chemistry Approach for the Synthesis of Mono and Bis Aryloxy Linked Coumarinyl Triazoles as Anti-Tubercular Agents. Eur. J. Med. Chem. 2015, 105, 194–207. DOI: 10.1016/j.ejmech.2015.10.019.
  • Sajja, Y.; Vanguru, S.; Jilla, L.; Vulupala, H. R.; Bantu, R.; Yogeswari, P.; Sriram, D.; Nagarapu, L. A Convenient Synthesis and Screening of Benzosuberone Bearing 1,2,3-Triazoles against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2016, 26, 4292–4295. DOI: 10.1016/j.bmcl.2016.07.039.
  • Zhang, S.; Xu, Z.; Gao, C.; Ren, Q. C.; Chang, L.; Lv, Z. S.; Feng, L. S. Triazole Derivatives and Their anti-Tubercular Activity. Eur. J. Med. Chem. 2017, 138, 501–513. DOI: 10.1016/j.ejmech.2017.06.051.
  • Tehrani, K. H.; Mashayekhi, V.; Azerang, P.; Minaei, S.; Sardari, S.; Kobarfard, F. Synthesis and Antimycobacterial Activity of Some Triazole derivatives-New Route to Functionalized Triazolopyridazines. Iran. J. Pharm. Res. 2015, 14, 59–68.
  • Beddell, C. R.; Goodford, P. J.; Norrington, F. E.; Wilkinson, S.; Wootton, R. Compounds Designed to Fit a Site of Known Structure in Human Haemoglobin. Br. J. Pharmacol. 1976, 57, 201–209. DOI: 10.1111/j.1476-5381.1976.tb07468.x.
  • Kumar, S.; Arya, D. P. Recognition of HIV TAR RNA by Triazole Linked Neomycin Dimers. Bioorg. Med. Chem. Lett. 2011, 21, 4788–4792. DOI: 10.1016/j.bmcl.2011.06.058.
  • Shaikh, M. H.; Subhedar, D. D.; Nawale, L.; Sarkar, D.; Khan, F. A. K.; Sangshetti, J. N.; Shingate, B. B. 1,2,3-Triazole Derivatives as Antitubercular Agents: synthesis, Biological Evaluation and Molecular Docking Study. Med. Chem. Commun. 2015, 6, 1104–1116. DOI: 10.1039/C5MD00057B.
  • Subhedar, D. D.; Shaikh, M. H.; Shingate, B. B.; Nawale, L.; Sarkar, D.; Khedkar, V. M. Novel Tetrazoloquinoline-Thiazolidinone Conjugates as Possible Antitubercular Agents: synthesis and Molecular Docking. Med. Chem. Commun. 2016, 7, 1832–1848. DOI: 10.1039/C6MD00278A.
  • Subhedar, D. D.; Shaikh, M. H.; Nawale, L.; Yeware, A.; Sarkar, D.; Khan, F. A. K.; Sangshetti, J. N.; Shingate, B. B. Novel Tetrazoloquinoline-Rhodanine Conjugates: Highly Efficient Synthesis and Biological Evaluation. Bioorg. Med. Chem. Lett. 2016, 26, 2278–2283. DOI: 10.1016/j.bmcl.2016.03.045.
  • Subhedar, D. D.; Shaikh, M. H.; Khan, F. A. K.; Sangshetti, J. N.; Khedkar, V. M.; Shingate, B. B. Facile Synthesis of New N-Sulfonamidyl-4-Thiazolidinone Derivatives and Their Biological Evaluation. New J. Chem. 2016, 40, 3047–3058. DOI: 10.1039/C6NJ00021E.
  • Shaikh, M. H.; Subhedar, D. D.; Arkile, M.; Khedkar, V. M.; Jadhav, N.; Sarkar, D.; Shingate, B. B. Synthesis and Bioactivity of Novel Triazole Incorporated Benzothiazinone Derivatives as Antitubercular and Antioxidant Agent. Bioorg. Med. Chem. Lett. 2016, 26, 561–569. DOI: 10.1016/j.bmcl.2015.11.071.
  • Shaikh, M. H.; Subhedar, D. D.; Khan, F. A. K.; Sangshetti, J. N.; Nawale, L.; Arkile, M.; Sarkar, D.; Shingate, B. B. Synthesis of Novel Triazole‐Incorporated Isatin Derivatives as Antifungal, Antitubercular, and Antioxidant Agents and Molecular Docking Study. J. Heterocyclic Chem. 2017, 54, 413–421. DOI: 10.1002/jhet.2598.
  • Shaikh, M. H.; Subhedar, D. D.; Khan, F. A. K.; Sangshetti, J. N.; Shingate, B. B. 1,2,3-Triazole Incorporated Coumarin Derivatives as Potential Antifungal and Antioxidant Agents. Chin. Chem. Lett. 2016, 27, 295–301. DOI: 10.1016/j.cclet.2015.11.003.
  • Shaikh, M. H.; Subhedar, D. D.; Shingate, B. B.; Khan, F. A. K.; Sangshetti, J. N.; Khedkar, V. M.; Nawale, L.; Sarkar, D.; Navale, G. R.; Shinde, S. S. Biological Evaluation and Molecular Docking of Novel Coumarin in Corporated Triazoles as Antitubercular, Antioxidant and Antimicrobial Agents. Med. Chem. Res. 2016, 25, 790–804.
  • Subhedar, D. D.; Shaikh, M. H.; Arkile, M. A.; Yeware, A.; Sarkar, D.; Shingate, B. B. Facile Synthesis of 1,3-Thiazolidin-4-Ones as Antitubercular Agents. Bioorg. Med. Chem. Lett. 2016, 26, 1704–1708. DOI: 10.1016/j.bmcl.2016.02.056.
  • Subhedar, D. D.; Shaikh, M. H.; Shingate, B. B.; Nawale, L.; Sarkar, D.; Khedkar, V. M.; Khan, F. A. K.; Sangshetti, J. N. Quinolidene-Rhodanine Conjugates: Facile Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2017, 125, 385–399. DOI: 10.1016/j.ejmech.2016.09.059.
  • Danne, A. B.; Choudhari, A. S.; Chakraborty, S.; Sarkar, D.; Khedkar, V. M.; Shingate, B. B. Triazole-Diindolylmethane Conjugates as New Antitubercular Agents: synthesis, Bioevaluation, and Molecular Docking. Med. Chem. Commun. 2018, 9, 1114–1130. DOI: 10.1039/C8MD00055G.
  • Addla, D.; Jallapally, A.; Gurram, D.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Design, Synthesis and Evaluation of 1,2,3-Triazole-Adamantylacetamide Hybrids as Potent Inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2014, 24, 1974–1979. DOI: 10.1016/j.bmcl.2014.02.061.
  • Singh, R. S.; Gupta, R. K.; Paitandi, R. P.; Misra, A.; Pandey, D. S. Triazole-Appended BODIPY-Piperazine Conjugates and Their Efficacy toward Mercury Sensing. New J. Chem. 2015, 39, 2233–2239. DOI: 10.1039/C4NJ01625D.
  • Tiew, K. C.; Dou, D.; Teramoto, T.; Lai, H.; Alliston, K. R.; Lushington, G. H.; Padmanabhan, R.; Groutas, W. C. Inhibition of Dengue Virus and West Nile Virus Proteases by Click Chemistry-Derived Benz[d]Isothiazol-3(2H)-One Derivatives. Bioorg. Med. Chem. 2012, 20, 1213–1221. DOI: 10.1016/j.bmc.2011.12.047.
  • Franzblau, S. G.; Witzig, R. S.; McLaughlin, J. C.; Torres, P.; Madico, G.; Hernandez, A.; Degnan, M. T.; Cook, M. B.; Quenzer, V. K.; Ferguson, R. M.; et al. Rapid, Low-Technology MIC Determination with Clinical Mycobacterium tuberculosis Isolates by Using the Microplate Alamar Blue Assay. J. Clin. Microbiol. 1998, 36, 362–366.
  • Arnott, J. A.; Planey, S. L. The Influence of Lipophilicity in Drug Discovery and Design. Expert Opin. Drug Discov. 2012, 7, 863–875. DOI: 10.1517/17460441.2012.714363.
  • Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. DOI: 10.1021/jm0306430.
  • Menendez, C.; Gau, S.; Lherbet, C.; Rodriguez, F.; Inard, C.; Pasca, M. R.; Baltas, M. Synthesis and Biological Activities of Triazole Derivatives as Inhibitors of InhA and Antituberculosis Agents. Eur. J. Med. Chem. 2011, 46, 5524–5531. DOI: 10.1016/j.ejmech.2011.09.013.
  • Vilcheze, C.; Morbidoni, H. R.; Weisbrod, T. R.; Iwamoto, H.; Kuo, M.; Sacchettini, J. C.; Jr.; Jacobs, W. R. Inactivation of the inhA-Encoded Fatty Acid Synthase II (FASII) Enoyl-Acyl Carrier Protein Reductase Induces Accumulation of the FASI End Products and Cell Lysis of Mycobacterium smegmatis. J. Bacteriol. 2000, 182, 4059–4067. DOI: 10.1128/jb.182.14.4059-4067.2000.
  • Lipinski, C. A.; Lombardo, L.; Dominy, B. W.; Feeney, P. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. J. Adv. Drug Deliv. Rev. 2001, 46, 3–26. DOI: 10.1016/S0169-409X(00)00129-0.
  • molinspiration. http://www.molinspiration.com/cgi-bin/properties 2014.
  • Zhao, Y. H.; Abraham, M. H.; Le, J.; Hersey, A.; Luscombe, C. N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-Limited Steps of Human Oral Absorption and QSAR Studies. J. Pharm. Res. 2002, 19, 1446. DOI: 10.1023/A:1020444330011.
  • molsoft. http://www.molsoft.com/mprop.
  • Deshmukh, T. R.; Sarkate, A. P.; Lokwani, D. K.; Tiwari, S. V.; Azad, R.; Shingate, B. B. New Amide Linked Dimeric 1,2,3-Triazoles Bearing Aryloxy Scaffolds as a Potent Antiproliferative Agents and EGFR Tyrosine Kinase Phosphorylation Inhibitors. Bioorg. Med. Chem. Lett. 2019, 19, 126618–126625. DOI: 10.1016/j.bmcl.2019.08.022.
  • Deshmukh, T. R.; Khare, S. P.; Krishna, V. S.; Sriram, D.; Sangshetti, J. N.; Bhusnure, O.; Khedkar, V. M.; Shingate, B. B. Design and Synthesis of New Aryloxy-Linked Dimeric 1,2,3-Triazoles via Click Chemistry Approach: Biological Evaluation and Molecular Docking Study. J. Heterocyclic Chem. 2019, 56, 2144–2162. DOI: 10.1002/jhet.3608.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.