Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 52, 2022 - Issue 16
127
Views
7
CrossRef citations to date
0
Altmetric
Articles

[3 + 2] Cycloaddition synthesis of new (nicotinonitrile-chromene) hybrids linked to pyrazole units as potential acetylcholinesterase inhibitors

ORCID Icon & ORCID Icon
Pages 1672-1684 | Received 30 May 2022, Published online: 11 Aug 2022

References

  • Terry, A. V.; Buccafusco, J. The Cholinergic Hypothesis of Age and Alzheimer's Disease-Related Cognitive Deficits: recent Challenges and Their Implications for Novel Drug Development. J. Pharmacol. Exp. Ther. 2003, 306, 821–827. DOI: 10.1124/jpet.102.041616.
  • Kumar, A.; Singh, A. A Review on Alzheimer's Disease Pathophysiology and Its Management: An Update. Pharmacol. Rep. 2015, 67, 195–203. DOI: 10.1016/j.pharep.2014.09.004.
  • Huang, Y.; Mucke, L. Alzheimer Mechanisms and Therapeutic Strategies. Cell. 2012, 148, 1204–1222. DOI: 10.1016/j.cell.2012.02.040.
  • Dorababu, A. Promising Heterocycle-Based Scaffolds in Recent (2019–2021) Anti-Alzheimer's Drug Design and Discovery. Eur. J. Pharmacol. 2022, 920, 174847. DOI: 10.1016/j.ejphar.2022.174847.
  • Holzgrabe, U.; Kapková, P.; Alptüzün, V.; Scheiber, J.; Kugelmann, E. Targeting Acetylcholinesterase to Treat Neurodegeneration. Expert Opin. Ther. Targets. 2007, 11, 161–179. DOI: 10.1517/14728222.11.2.161.
  • Ibrar, A.; Khan, A.; Ali, M.; Sarwar, R.; Mehsud, S.; Farooq, U.; Halimi, S.; Khan, I.; Al-Harrasi, A. Combined in Vitro and in Silico Studies for the Anticholinesterase Activity and Pharmacokinetics of Coumarinyl Thiazoles and Oxadiazoles. Front. Chem. 2018, 6, 61. DOI: 10.3389/fchem.2018.00061.
  • Ahmed, A. A. M.; Mekky, A. E. M.; Sanad, S. M. H. New Piperazine-Based Bis(Thieno[2,3-b]Pyridine) and Bis(Pyrazolo[3,4-b]Pyridine) Hybrids Linked to Benzofuran Units: Synthesis and in Vitro Screening of Potential Acetylcholinesterase Inhibitors. Synth. Commun. 2022, 52, 912–925. DOI: 10.1080/00397911.2022.2056853.
  • van Greunen, D. G.; Johan van der Westhuizen, C.; Cordier, W.; Nell, M.; Stander, A.; Steenkamp, V.; Panayides, J.; Riley, D. L. Novel N-Benzylpiperidine Carboxamide Derivatives as Potential Cholinesterase Inhibitors for the Treatment of Alzheimer's Disease. Eur. J. Med. Chem. 2019, 179, 680–693. DOI: 10.1016/j.ejmech.2019.06.088.
  • Turkan, F.; Cetin, A.; Taslimi, P.; Karaman, M.; Gulçin, İ. Synthesis, Biological Evaluation and Molecular Docking of Novel Pyrazole Derivatives as Potent Carbonic Anhydrase and Acetylcholinesterase Inhibitors. Bioorg. Chem. 2019, 86, 420–427. DOI: 10.1016/j.bioorg.2019.02.013.
  • Turkan, F.; Cetin, A.; Taslimi, P.; Gulçin, İ. Some Pyrazoles Derivatives: potent Carbonic Anhydrase, α-Glycosidase, and Cholinesterase Enzymes Inhibitors. Arch. Pharm. Chem. Life Sci. 2018, 351, 1800200. DOI: 10.1002/ardp.201800200.
  • Mekky, A. E. M.; Sanad, S. M. H. Synthesis, Characterization, and Antimicrobial Evaluation of Novel Thiohydrazonates and Pyrazolo[3,4-b]Pyridines. Polycycl. Aromat. Compd. 2021, 41, 936–949. DOI: 10.1080/10406638.2019.1631194.
  • Metwally, N. H.; Koraa, T. H.; Sanad, S. M. H. Green One-Pot Synthesis and in Vitro Antibacterial Screening of Pyrano[2,3-c]Pyrazoles, 4H-Chromenes and Pyrazolo[1,5-a]Pyrimidines Using Biocatalyzed Pepsin. Synth. Commun. 2022, 52, 1139–1154. DOI: 10.1080/00397911.2022.2074301.
  • Sharma, S.; Bhatia, V. Appraisal of the Role of in Silico Methods in Pyrazole Based Drug Design. Mini Rev. Med. Chem. 2021, 21, 204–216. DOI: 10.2174/1389557520666200901184146.
  • Khan, M. F.; Anwer, T.; Bakht, A.; Verma, G.; Akhtar, W.; Alam, M. M.; Rizvi, M. A.; Akhter, M.; Shaquiquzzaman, M. Unveiling Novel Diphenyl-1H-Pyrazole Based Acrylates Tethered to 1,2,3-Triazole as Promising Apoptosis Inducing Cytotoxic and Anti-Inflammatory Agents. Bioorg. Chem. 2019, 87, 667–678. DOI: 10.1016/j.bioorg.2019.03.071.
  • Sanad, S. M. H.; Mekky, A. E. M. 3-Aminopyrazolo[3,4-b]Pyridine: Effective Precursor for Barium Hydroxide-Mediated Three Components Synthesis of New Mono- and Bis(Pyrimidines) with Potential Cytotoxic Activity. Chem Biodivers 2022, 19, e202100500. DOI: 10.1002/cbdv.202100500.
  • Kumar, G.; Tanwar, O.; Kumar, J.; Akhter, M.; Sharma, S.; Pillai, C. R.; Alam, M. M.; Zama, M. S. Pyrazole-Pyrazoline as Promising Novel Antimalarial Agents: A Mechanistic Study. Eur. J. Med. Chem. 2018, 149, 139–147. DOI: 10.1016/j.ejmech.2018.01.082.
  • Fichez, J.; Soulie, C.; Le Corre, L.; Sayon, S.; Priet, S.; Alvarez, K.; Delelis, O.; Gizzi, P.; Prestat, G.; Gravier-Pelletier, C.; et al. Discovery, SAR Study and ADME Properties of Methyl 4-Amino-3-Cyano-1-(2-Benzyloxyphenyl)-1H-Pyrazole-5-Carboxylate as an HIV-1 Replication Inhibitor. RSC Med. Chem. 2020, 11, 577–582. DOI: 10.1039/D0MD00025F.
  • Othman, I. M.; Alamshany, Z. M.; Tashkandi, N. Y.; Gad-Elkareem, M. A.; Anwar, M. M.; Nossier, E. S. New Pyrimidine and Pyrazole-Based Compounds as Potential EGFR Inhibitors: Synthesis, Anticancer, Antimicrobial Evaluation and Computational Studies. Bioorg. Chem. 2021, 114, 105078. DOI: 10.1016/j.bioorg.2021.105078.
  • Dey, S.; Bajaj, S. O. Promising Anticancer Drug Thapsigargin: A Perspective toward the Total Synthesis. Synth. Commun. 2018, 48, 1–13. DOI: 10.1080/00397911.2017.1386789.
  • Abdellatif, K. R.; Abdelall, E. K.; Elshemy, H. A.; Philoppes, J. N.; Hassanein, E. H.; Kahk, N. M. Optimization of Pyrazole-Based Compounds with 1,2,4-Triazole-3-Thiol Moiety as Selective COX-2 Inhibitors Cardioprotective Drug Candidates: Design, Synthesis, Cyclooxygenase Inhibition, anti-Inflammatory, Ulcerogenicity, Cardiovascular Evaluation, and Molecular Modeling Studies. Bioorg Chem. 2021, 114, 105122. DOI: 10.1016/j.bioorg.2021.105122.
  • Mekky, A. E. M.; Sanad, S. M. H. Novel Bis(Pyrazole-Benzofuran) Hybrids Possessing Piperazine Linker: Synthesis of Potent Bacterial Biofilm and MurB Inhibitors. Bioorg Chem. 2020, 102, 104094. DOI: 10.1016/j.bioorg.2020.104094.
  • Steinbach, G.; Lynch, P. M.; Phillips, R. K.; Wallace, M. H.; Hawk, E.; Gordon, G. B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; et al. The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor, in Familial Adenomatous Polyposis. N. Engl. J. Med. 2000, 342, 1946–1952. DOI: 10.1056/NEJM200006293422603.
  • Uslaner, J. M.; Parmentier-Batteur, S.; Flick, R. B.; Surles, N. O.; Lam, J. S. H.; McNaughton, C. H.; Jacobson, M. A.; Hutson, P. H. Dose-Dependent Effect of CDPPB, the mGluR5 Positive Allosteric Modulator, on Recognition Memory is Associated with GluR1 and CREB Phosphorylation in the Prefrontal Cortex and Hippocampus. Neuropharmacology. 2009, 57, 531–538. DOI: 10.1016/j.neuropharm.2009.07.022.
  • Friedrich, G.; Rose, T.; Rissler, K. Determination of Lonazolac and Its Hydroxy and O-Sulfated Metabolites by on-Line Sample Preparation Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B. 2002, 766, 295–305. DOI: 10.1016/S0378-4347(01)00514-X.
  • Ríos‐Gutiérrez, M.; Domingo, L. R. Unravelling the Mysteries of the [3 + 2] Cycloaddition Reactions. European J Organic Chem. 2019, 2019, 267–282. DOI: 10.1002/ejoc.201800916.
  • Aqlan, F. M. Synthesis, ADMET and Docking Studies of Novel Pyrazoles Incorporating Coumarin Moiety as Tyrosine Kinase (Src) Inhibitors. Biointerface Res. Appl. Chem. 2021, 11, 13706–13714. DOI: 10.55218/JASR.s1202112425.
  • Sanad, S. M. H.; Hanna, D. H.; Mekky, A. E. M. Regioselective Synthesis of Novel Antibacterial Pyrazole-Benzofuran Hybrids: 2D NMR Spectroscopy Studies and Molecular Docking. J. Mol. Struct. 2019, 1188, 214–226. DOI: 10.1016/j.molstruc.2019.03.088.
  • Farag, A. M.; Ali, K. A.; El-Debss, T. M.; Mayhoub, A. S.; Amr, A. G. E.; Abdel-Hafez, N. A.; Abdulla, M. M. Design, Synthesis and Structure-Activity Relationship Study of Novel Pyrazole-Based Heterocycles as Potential Antitumor Agents. Eur. J. Med. Chem. 2010, 45, 5887–5898. DOI: 10.1016/j.ejmech.2010.09.054.
  • Rodda, J.; Carter, J. Cholinesterase Inhibitors and Memantine for Symptomatic Treatment of Dementia. BMJ. 2012, 344, e2986. DOI: 10.1136/bmj.e2986.
  • Ibrahim, M. M.; Gabr, M. T. Multitarget Therapeutic Strategies for Alzheimer’s Disease. Neural Regen. Res. 2019, 14, 437–440. DOI: 10.4103/1673-5374.245463.
  • Lemke, C.; Christmann, J.; Yin, J.; Alonso, J. M.; Serrano, E.; Chioua, M.; Ismaili, L.; Martínez-Grau, M. A.; Beadle, C. D.; Vetman, T.; et al. Chromenones as Multineurotargeting Inhibitors of Human Enzymes. ACS Omega. 2019, 4, 22161–22168. DOI: 10.1021/acsomega.9b03409.
  • Marcade, M.; Bourdin, J.; Loiseau, N.; Peillon, H.; Rayer, A.; Drouin, D.; Schweighoffer, F.; Désiré, L. Etazolate, a Neuroprotective Drug Linking GABAA Receptor Pharmacology to Amyloid Precursor Protein Processing. J. Neurochem. 2008, 106, 392–404. DOI: 10.1111/j.1471-4159.2008.05396.x.
  • Meijer, L.; Flajolet, M.; Greengard, P. Pharmacological Inhibitors of Glycogen Synthase Kinase 3. Trends Pharmacol. Sci. 2004, 25, 471–480. DOI: 10.1016/j.tips.2004.07.006.
  • Alipour, M.; Khoobi, M.; Foroumadi, A.; Nadri, H.; Moradi, A.; Sakhteman, A.; Ghandi, M.; Shafiee, A. Novel Coumarin Derivatives Bearing N-Benzyl Pyridinium Moiety: Potent and Dual Binding Site Acetylcholinesterase Inhibitors. Bioorg. Med. Chem. 2012, 20, 7214–7222. DOI: 10.1016/j.bmc.2012.08.052.
  • Alipour, M.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Ghandi, M.; Foroumadi, A.; Shafiee, A. Synthesis of Some New 3‐Coumaranone and Coumarin Derivatives as Dual Inhibitors of Acetyl‐and Butyrylcholinesterase. Arch. Pharm. 2013, 346, 577–587. DOI: 10.1002/ardp.201300080.
  • Sanad, S. M. H.; Mekky, A. E. M. Novel Nicotinonitrile-Coumarin Hybrids as Potential Acetylcholinesterase Inhibitors: Design, Synthesis, in Vitro and in Silico Studies. J Iran Chem SOC 2021, 18, 213–224. DOI: 10.1007/s13738-020-02018-6.
  • Mekky, A. E. M.; Sanad, S. M. H. Synthesis and in Vitro Study of New Coumarin Derivatives Linked to Nicotinonitrile Moieties as Potential Acetylcholinesterase Inhibitors. J. Heterocyclic Chem. 2020, 57, 4278–4290. DOI: 10.1002/jhet.4134.
  • Ahmed, A. A. M.; Mekky, A. E. M.; Sanad, S. M. H. Effective Synthesis of New Benzo-Fused Macrocyclic and Thiamacrocyclic Dilactams and Related Pyrazolo-Fused Macrocycles. J. Heterocyclic Chem. 2022, 59, 286–296. DOI: 10.1002/jhet.4383.
  • Ahmed, A. A. M.; Mekky, A. E. M.; Sanad, S. M. H. Effective Synthesis of New Benzo-Fused Macrocyclic and Heteromacrocyclic Bis(Schiff Bases). J. Iran Chem. Soc. 2022, 19, 1711–1722. DOI: 10.1007/s13738-021-02409-3.
  • Sanad, S. M. H.; Mekky, A. E. M.; El-Idreesy, T. T. Potential Bacterial Biofilm, MRSA, and DHFR Inhibitors Based on New Morpholine-Linked Chromene-Thiazole Hybrids: One-Pot Synthesis and in Silico Study. J. Mol. Struct. 2022, 1248, 131476. DOI: 10.1016/j.molstruc.2021.131476.
  • Mekky, A. E. M.; El-Idreesy, T. T.; Sanad, S. M. H. Chloramine Trihydrate-Mediated Tandem Synthesis of New Pyrrole and/or Arene-Linked Mono- and Bis(1,3,4-Oxadiazole) Hybrids as Potential Bacterial Biofilm and MRSA Inhibitors. Chem. Biodiversity 2022,e202200338. DOI: 10.1002/cbdv.202200338.
  • Sanad, S. M. H.; Mekky, A. E. M.; Ahmed, A. A. M. Tandem Synthesis, Cytotoxicity and in Silico Study of New 1,3,4-Oxadiazoles as Potential Thymidylate Synthase Inhibitors. Arch. Pharm. 2022, e2200170. DOI: 10.1002/ardp.202200170.
  • Abdelfattah, A. M.; Mekky, A. E. M.; Sanad, S. M. H. Synthesis, Antibacterial Activity and in Silico Study of New Bis(1,3,4-Oxadiazoles). Synth. Commun. 2022, 52, 1421-1440. DOI: 10.1080/00397911.2022.2095211.
  • Ahmed, A. A. M.; Mekky, A. E. M.; Sanad, S. M. H. New Bis(Pyrazolo[3,4-b]Pyridines) and Bis(Thieno[2,3-b]Pyridines) as Potential Acetylcholinesterase Inhibitors: Synthesis, in Vitro and SwissADME Prediction Study. J. Iran. Chem. Soc. 2022, DOI: 10.1007/s13738-022-02614-8.
  • Mekky, A. E. M.; Sanad, S. M. H.; El-Idreesy, T. T. New Thiazole and Thiazole-Chromene Hybrids Possessing Morpholine Units: Piperazine-Mediated One-Pot Synthesis of Potential Acetylcholinesterase Inhibitors. Synth. Commun. 2021, 51, 3332–3344. DOI: 10.1080/00397911.2021.1970774.
  • Sanad, S. M. H.; Ahmed, A. A. M.; Mekky, A. E. M. Synthesis, in-Vitro and in-Silico Study of Novel Thiazoles as Potent Antibacterial Agents and MurB Inhibitors. Arch. Pharm. 2020, 353, e1900309. DOI: 10.1002/ardp.201900309.
  • Ma, F.; Liu, J.; Zhou, T.; Lei, M.; Chen, J.; Wang, X.; Zhang, Y.; Shen, X.; Hu, L. Discovery and Structure-Activity Relationships Study of Thieno[2,3-b]Pyridine Analogues as Hepatic Gluconeogenesis Inhibitors. Eur. J. Med. Chem. 2018, 152, 307–317. DOI: 10.1016/j.ejmech.2018.04.028.
  • Guieu, S.; Rocha, J.; Silva, A. M. Synthesis of Unsymmetrical Methylenebisphenol Derivatives. Synlett. 2013, 24, 762–764. DOI: 10.1055/s-0032-1318394.
  • Sanad, S. M. H.; Mekky, A. E. M. Synthesis, in-Vitro Antibacterial and Anticancer Screening of Novel Nicotinonitrile-Coumarin Hybrids Utilizing Piperazine Citrate. Synth. Commun. 2020, 50, 1468–1485. DOI: 10.1080/00397911.2020.1743318.
  • Mekky, A. E. M.; Ahmed, M. S. M.; Sanad, S. M. H.; Abdallah, Z. A. Bis(Benzofuran-Enaminone) Hybrid Possessing Piperazine Linker: Versatile Precursor for Microwave Assisted Synthesis of Bis(Pyrido[2',3':3,4]Pyrazolo[1,5-a]Pyrimidines). Synth. Commun. 2021, 51, 1085–1099. DOI: 10.1080/00397911.2020.1867745.
  • Ahmed, M. S. M.; Mekky, A. E. M.; Sanad, S. M. H. Regioselective [3 + 2] Cycloaddition Synthesis and Theoretical Calculations of New Chromene-Pyrazole Hybrids: A DFT-Based Parr Function, Fukui Function, Local Reactivity Indexes, and MEP Analysis. J. Mol. Struct. 2022, 1267, 133583. DOI: 10.1016/j.molstruc.2022.133583.
  • Ellman, G. L.; Courtney, K. D.; Andres, V.; Feather-Stone, R. M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–90. DOI: 10.1016/0006-2952(61)90145-9..
  • Hansch, C.; Leo, A.; Taft, R. W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. Chem. Rev. 1991, 91, 165–195. DOI: 10.1021/cr00002a004.
  • Feng, Y.; Wang, X. Antioxidant Therapies for Alzheimer's Disease. Oxid. Med. Cell Longev. 2012, 2012, 472932. DOI: 10.1155/2012/472932.
  • McLellan, M. E.; Kajdasz, S. T.; Hyman, B. T.; Bacskai, B. J. In Vivo Imaging of Reactive Oxygen Species Specifically Associated with Thioflavine S-Positive Amyloid Plaques by Multiphoton Microscopy. J. Neurosci. 2003, 23, 2212–2217. DOI: 10.1523/JNEUROSCI.23-06-02212.2003.
  • Daina, A.; Michielin, O.; Zoete, V. A. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. DOI: 10.1038/srep42717.
  • Arnott, J. A.; Planey, S. L. The Influence of Lipophilicity in Drug Discovery and Design. Expert Opin. Drug Discov. 2012, 7, 863–875. DOI: 10.1517/17460441.2012.714363.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. DOI: 10.1016/s0169-409x(00)00129-0..
  • Lipinski, C. A. Lead-and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. DOI: 10.1016/j.ddtec.2004.11.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.