Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 13
139
Views
5
CrossRef citations to date
0
Altmetric
Articles

Tandem synthesis and antibacterial screening of new thieno[2,3-b]pyridine-fused pyrimidin-4(3H)-ones linked to thiazole or oxazole units

ORCID Icon & ORCID Icon
Pages 994-1007 | Received 08 Feb 2023, Published online: 03 May 2023

References

  • John, T. J.; Dandona, L.; Sharma, V. P.; Kakkar, M. Continuing Challenge of Infectious Diseases in India. Lancet 2011, 377, 252–269. DOI: 10.1016/S0140-6736(10)61265-2.
  • Jones, K. E.; Patel, N. G.; Levy, M. A.; Storeygard, A.; Balk, D.; Gittleman, J. L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993. DOI: 10.1038/nature06536.
  • Cole, S. T. Who Will Develop New Antibacterial Agents? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130430. DOI: 10.1098/rstb.2013.0430.
  • Maddila, S.; Gorle, S.; Seshadri, N.; Lavanya, P.; Jonnalagadda, S. B. Synthesis, Antibacterial and Antifungal Activity of Novel Benzothiazole Pyrimidine Derivatives. Arab. J. Chem. 2016, 9, 681–687. DOI: 10.1016/j.arabjc.2013.04.003.
  • Chen, P. J.; Yang, A.; Gu, Y. F.; Zhang, X. S.; Shao, K. P.; Xue, D. Q.; He, P.; Jiang, T. F.; Zhang, Q. R.; Liu, H. M. Synthesis, In Vitro Antimicrobial and Cytotoxic Activities of Novel Pyrimidine-Benzimidazol Combinations. Bioorg. Med. Chem. Lett. 2014, 24, 2741–2743. DOI: 10.1016/j.bmcl.2014.04.037.
  • Hilmy, K. M. H.; Khalifa, M. M.; Hawata, M. A. A.; Keshk, R. M. A.; El-Torgman, A. A. Synthesis of New Pyrrolo[2,3-d]Pyrimidine Derivatives as Antibacterial and Antifungal Agents. Eur. J. Med. Chem. 2010, 45, 5243–5250. DOI: 10.1016/j.ejmech.2010.08.043.
  • Meneghesso, S.; Vanderlinden, E.; Stevaert, A.; McGuigan, C.; Balzarini, J.; Naesens, L. Synthesis and Biological Evaluation of Pyrimidine Nucleoside Monophosphate Prodrugs Targeted against Influenza Virus. Antiviral Res. 2012, 94, 35–43. DOI: 10.1016/j.antiviral.2012.01.007.
  • Maurya, S. S.; Khan, S. I.; Bahuguna, A.; Kumar, D.; Rawat, D. S. Synthesis, Antimalarial Activity, Heme Binding and Docking Studies of N-Substituted 4-Aminoquinoline-Pyrimidine Molecular Hybrids. Eur. J. Med. Chem. 2017, 129, 175–185. DOI: 10.1016/j.ejmech.2017.02.024.
  • Bhalgat, C. M.; Ali, M. I.; Ramesh, B.; Ramu, G. Novel Pyrimidine and Its Triazole Fused Derivatives: synthesis and Investigation of Antioxidant and anti-Inflammatory Activity. Arab. J. Chem. 2014, 7, 986–993. DOI: 10.1016/j.arabjc.2010.12.021.
  • Huang, Y. Y.; Wang, L. Y.; Chang, C. H.; Kuo, Y. H.; Kaneko, K.; Takayama, H.; Kimura, M.; Juang, S. H.; Wong, F. F. One-Pot Synthesis and Antiproliferative Evaluation of Pyrazolo[3,4-d]Pyrimidine Derivatives. Tetrahedron 2012, 68, 9658–9664. DOI: 10.1016/j.tet.2012.09.054.
  • El-Sayed, N. S.; El-Bendary, E. R.; El-Ashry, S. M.; El-Kerdawy, M. M. Synthesis and Antitumor Activity of New Sulfonamide Derivatives of Thiadiazolo[3,2-a]Pyrimidines. Eur. J. Med. Chem. 2011, 46, 3714–3720. DOI: 10.1016/j.ejmech.2011.05.037.
  • Kong, W.; Zhou, Y.; Song, Q. Lewis-Acid Promoted Chemoselective Condensation of 2-Aminobenzimidazoles or 3-Aminoindazoles with 3-Ethoxycyclobutanones to Construct Fused Nitrogen Heterocycles. Adv. Synth. Catal. 2018, 360, 1943–1948. DOI: 10.1002/adsc.201701641.
  • Teleb, M. A. M.; Mekky, A. E. M.; Sanad, S. M. H. 3-Aminothieno[2,3-b]Pyridine-2-Carboxylate: Effective Precursor for Microwave-Assisted Three Components Synthesis of New Pyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidin-4(3H)-One Hybrids. J. Heterocycl. Chem. 2021, 58, 1825–1835. DOI: 10.1002/jhet.4313.
  • Sanad, S. M. H.; Mekky, A. E. M. Piperazine‐Mediated Tandem Synthesis of Bis(Thieno[2,3‐b]Pyridines): Versatile Precursors for Related Fused [1,2,4]Triazolo[4,3‐a]Pyrimidines. J. Heterocycl. Chem. 2020, 57, 3142–3152. DOI: 10.1002/jhet.4021.
  • Mekky, A. E. M.; Ahmed, M. S. M.; Sanad, S. M. H.; Abdallah, Z. A. Bis(Benzofuran-Enaminone) Hybrid Possessing Piperazine Linker: Versatile Precursor for Microwave Assisted Synthesis of Bis(Pyrido[2′,3′:3,4]Pyrazolo[1,5-a]Pyrimidines). Synth. Commun. 2021, 51, 1085–1099. DOI: 10.1080/00397911.2020.1867745.
  • Sanad, S. M. H.; Mekky, A. E. M. New Pyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidin-4(3H)-One Hybrids Linked to Arene Units: Synthesis of Potential MRSA, VRE and COX-2 Inhibitors. Can. J. Chem. 2021, 99, 900–909. DOI: 10.1139/cjc-2021-0121.
  • Sanad, S. M. H.; Hawass, M. A. E.; Ahmed, A. A. M.; Elneairy, M. A. A. Facile Synthesis and Characterization of Novel Pyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidin-4(3H)-One and Pyrido[2′,3′:3,4]Pyrazolo[1,5-a]Pyrimidine Incorporating 1,3-Diarylpyrazole Moiety. Synth. Commun. 2018, 48, 1847–1856. DOI: 10.1080/00397911.2018.1468911.
  • Sanad, S. M. H.; Hawass, M. A. E.; Ahmed, A. A. M.; Elneairy, M. A. A. Efficient Synthesis and Characterization of Novel Pyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidines and Their Fused [1,2,4]Triazole Derivatives. J. Heterocycl. Chem. 2018, 55, 2823–2833. DOI: 10.1002/jhet.3352.
  • Sanad, S. M. H.; Abdel Fattah, A. M.; Attaby, F. A.; Elneairy, M. A. A. Pyridine-2(1H)-Thiones: Versatile Precursors for Novel Pyrazolo[3,4-b]Pyridine, Thieno[2,3-b]Pyridines, and Their Fused Azines. J. Heterocycl. Chem. 2019, 56, 1588–1597. DOI: 10.1002/jhet.3444.
  • Dyachenko, I. V.; Dyachenko, V. D.; Dorovatovsky, P. V.; Khrustalev, V. N.; Nenajdenko, V. G. One-Pot Synthesis of Thieno[2,3-b]Pyridine and Pyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidine Derivatives. Russ. J. Org. Chem. 2020, 56, 974–982. DOI: 10.1134/S1070428020060020.
  • Sirakanyan, S. N.; Spinelli, D.; Geronikaki, A.; Hovakimyan, A. A. On the Reactivity of Pyrido[3′,2′:4,5]Furo(Thieno)[3,2-d]Pyrimidin-7(8)-Ones with Some Alkyl Mono- and Di-Halides: Synthesis of New Heterocyclic Systems Containing Thiazolo[3,2-a]Pyrimidine and Pyrimido[2,1-b]Thiazine Moiety. Tetrahedron 2015, 71, 7638–7646. DOI: 10.1016/j.tet.2015.07.069.
  • Zheng, G. Z.; Bhatia, P.; Daanen, J.; Kolasa, T.; Patel, M.; Latshaw, S.; El Kouhen, O. F.; Chang, R.; Uchic, M. E.; Miller, L.; et al. Structure-Activity Relationship of Triazafluorenone Derivatives as Potent and Selective mGluR1 Antagonists. J. Med. Chem. 2005, 48, 7374–7388. DOI: 10.1021/jm0504407.
  • Schoepp, D. D.; Jane, D. E.; Monn, J. A. Pharmacological Agents Acting at Subtypes of Metabotropic Glutamate Receptors. Neuropharmacology 1999, 38, 1431–1476. DOI: 10.1016/S0028-3908(99)00092-1.
  • Taltavull, J.; Serrat, J.; Gràcia, J.; Gavaldà, A.; Andrés, M.; Córdoba, M.; Miralpeix, M.; Vilella, D.; Beleta, J.; Ryder, H.; Pagès, L. Synthesis and Biological Activity of Pyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidines as Phosphodiesterase Type 4 Inhibitors. J. Med. Chem. 2010, 53, 6912–6922. DOI: 10.1021/jm100524j.
  • Aziz, Y. M. A.; Said, M. M.; El Shihawy, H. A.; Abouzid, K. A. Discovery of Novel Tricyclic Pyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidin-4-Amine Derivatives as VEGFR-2 Inhibitors. Bioorg. Chem. 2015, 60, 1–12. DOI: 10.1016/j.bioorg.2015.03.004.
  • Loidreau, Y.; Deau, E.; Marchand, P.; Nourrisson, M. R.; Logé, C.; Coadou, G.; Loaëc, N.; Meijer, L.; Besson, T. Synthesis and Molecular Modelling Studies of 8-Arylpyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidin-4-Amines as Multitarget Ser/Thr Kinases Inhibitors. Eur. J. Med. Chem. 2015, 92, 124–134. DOI: 10.1016/j.ejmech.2014.12.038.
  • Sirakanyan, S. N.; Spinelli, D.; Geronikaki, A.; Kartsev, V. G.; Hakobyan, E. K.; Hovakimyan, A. A. Synthesis and Antimicrobial Activity of New Derivatives of Pyrano[4″,3″:4′,5′]Pyrido[3′,2′:4,5]Thieno[3,2-d]Pyrimidine and New Heterocyclic Systems. Synth. Commun. 2019, 49, 1262–1276. DOI: 10.1080/00397911.2019.1595659.
  • Agarwal, A.; Louise-May, S.; Thanassi, J. A.; Podos, S. D.; Cheng, J.; Thoma, C.; Liu, C.; Wiles, J. A.; Nelson, D. M.; Phadke, A. S.; et al. Small Molecule Inhibitors of E. coli Primase, a Novel Bacterial Target. Bioorg. Med. Chem. Lett. 2007, 17, 2807–2810. DOI: 10.1016/j.bmcl.2007.02.056.
  • Kjellerup, L.; Gordon, S.; Cohrt, K. O.; Brown, W. D.; Fuglsang, A. T.; Winther, A. L. Identification of Antifungal H+-ATPase Inhibitors with Effect on Plasma Membrane Potential. Antimicrob. Agents Chemother. 2017, 61, e00032-17. DOI: 10.1128/AAC.00032-17.
  • Loidreau, Y.; Nourrisson, M. R.; Fruit, C.; Corbière, C.; Marchand, P.; Besson, T. Microwave-Assisted Synthesis of Potential Bioactive Benzo-, Pyrido- or Pyrazino-Thieno[3,2-d]Pyrimidin-4-Amine Analogs of MPC-6827. Pharmaceuticals 2020, 13, 202. DOI: 10.3390/ph13090202.
  • Sirakanyan, S.; Geronikaki, H.; Sahakyan, A.; Zakaryan, N.; Aharonyan, D.; Muradyan, H. Synthesis, Antitumor Activity, and Docking Analysis of New Pyrido[3′,2′:4,5]Furo(Thieno)[3,2-d]Pyrimidin-8-Amines. Molecules 2019, 24, 3952. DOI: 10.3390/molecules24213952.
  • Mishra, R.; Panday, A. K.; Choudhury, L. H.; Pal, J.; Subramanian, R.; Verma, A. Multicomponent Reactions of Arylglyoxal, 4-Hydroxycoumarin, and Cyclic 1,3-C,N-Binucleophiles: Binucleophile-Directed Synthesis of Fused Five- and Six-Membered N-Heterocycles. Eur. J. Org. Chem. 2017, 2017, 2789–2800. DOI: 10.1002/ejoc.201700115.
  • Li, L.; Xu, H.; Dai, L.; Xi, J.; Gao, L.; Rong, L. An Efficient Metal-Free Cascade Process for the Synthesis of 4-Arylpyrimido[1,2-b]Indazole-3-Carbonitrile Derivatives. Tetrahedron 2017, 73, 5358–5365. DOI: 10.1016/j.tet.2017.07.035.
  • Ibarra, I. A.; Islas-Jácome, A.; González-Zamora, E. Synthesis of Polyheterocycles via Multicomponent Reactions. Org. Biomol. Chem. 2018, 16, 1402–1418. DOI: 10.1039/C7OB02305G.
  • Krishnammagari, S. K.; Cho, B. G.; Kim, J. T.; Jeong, Y. T. An Efficient and Solvent-Free One-Pot Multi-Component Synthesis of Novel Highly Substituted Pyrido[2′,3′:3,4]Pyrazolo[1,5-a]Pyrimidine-3-Carbonitrile Derivatives Catalyzed by Tetramethylguanidine. Synth. Commun. 2018, 48, 2663–2674. DOI: 10.1080/00397911.2018.1514053.
  • Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis. Green Chem. 2014, 16, 2958–2975. DOI: 10.1039/C4GC00013G.
  • Kulkarni, A.; Torok, B. Microwave-Assisted Multicomponent Domino Cyclization-Aromatization: An Efficient Approach for the Synthesis of Substituted Quinolines. Green Chem. 2010, 12, 875–878. DOI: 10.1039/c001076f.
  • Zhou, T.-T.; Ma, F.; Shi, X.-F.; Xu, X.; Du, T.; Guo, X.-D.; Wang, G.-H.; Yu, L.; Rukachaisirikul, V.; Hu, L.-H.; et al. DMT Efficiently Inhibits Hepatic Gluconeogenesis by Regulating the Gαq Signaling Pathway. J. Mol. Endocrinol. 2017, 59, 151–169. DOI: 10.1530/JME-17-0121.
  • Ma, F.; Liu, J.; Zhou, T.; Lei, M.; Chen, J.; Wang, X.; Zhang, Y.; Shen, X.; Hu, L. Discovery and Structure-Activity Relationships Study of Thieno[2,3-b]Pyridine Analogues as Hepatic Gluconeogenesis Inhibitors. Eur. J. Med. Chem. 2018, 152, 307–317. DOI: 10.1016/j.ejmech.2018.04.028.
  • Sanad, S. M. H.; Mekky, A. E. M. Synthesis and Antibacterial Evaluation of New Pyrido[3',2':4,5]Thieno[3,2-d] Pyrimidin-4(3H)-One Hybrids Linked to Different Heteroarene Units. Mendeleev Commun. 2021, 31, 862–864. DOI: 10.1016/j.mencom.2021.11.031.
  • Sanad, S. M. H.; Mekky, A. E. M. Three-Component Regioselective Synthesis and Antibacterial Evaluation of New Arene-Linked Bis(Pyrazolo[1,5-a]Pyrimidine) Hybrids. Synth. Commun. 2023, 53, 658–672. DOI: 10.1080/00397911.2023.2191854.
  • Sanad, S. M. H.; Mekky, A. E. M.; Said, A. Y.; Elneairy, M. A. A. New Thieno[2,3-b]Pyridine-Fused [1,2,4]Triazolo[4,3-a]Pyrimidinone Hybrids as Potential MRSA and VRE Inhibitors. Mendeleev Commun. 2021, 31, 370–372. DOI: 10.1016/j.mencom.2021.04.029.
  • Abdallah, Z. A.; Sanad, S. M. H.; Mekky, A. E. M.; Ahmed, M. S. M. New Arylazo-Based (Chromene-Thiazole) Hybrids as Potential MRSA Inhibitors. Chem. Biodivers. 2023. DOI: 10.1016/10.1002/cbdv.202300206.
  • Sanad, S. M. H.; Mekky, A. E. M. New Thieno[2,3-b]Pyridine-Fused Pyrimidin-4(3H)-Ones as Potential Thymidylate Synthase Inhibitors: Synthesis, SAR, In Vitro and In Silico Study. J. Mol. Struct. 2023, 1282, 135236. DOI: 10.1016/j.molstruc.2023.135236.
  • Sanad, S. M. H.; Mekky, A. E. M.; Ahmed, A. A. M. Tandem Synthesis, Cytotoxicity and In Silico Study of New 1,3,4-Oxadiazoles as Potential Thymidylate Synthase Inhibitors. Arch. Pharm. 2022, 355, e2200170. DOI: 10.1002/ardp.202200170.
  • Mekky, A. E. M.; Sanad, S. M. H.; Abdelfattah, A. M. Tandem Synthesis, Antibacterial Evaluation and SwissADME Prediction Study of New Bis(1,3,4-Oxadiazoles) Linked to Arene Units. Mendeleev Commun. 2022, 32, 612–614. DOI: 10.1016/j.mencom.2022.09.014.
  • Bohm, N.; Krasselt, U.; Leistner, S.; Wagner, G. Reactions of 4-Oxo-4H-Pyrido[3′,2′: 4,5]Thieno[3,2-d]-1,3-Oxazines with Amines. Pharmazie 1992, 47, 897–901.
  • Wang, N.-Y.; Zuo, W.-Q.; Xu, Y.; Gao, C.; Zeng, X.-X.; Zhang, L.-D.; You, X.-Y.; Peng, C.-T.; Shen, Y.; Yang, S.-Y.; et al. Discovery and Structure–Activity Relationships Study of Novel Thieno[2,3-b]Pyridine Analogues as Hepatitis C Virus Inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 1581–1588. DOI: 10.1016/j.bmcl.2014.01.075.
  • Mekky, A. E. M.; Sanad, S. M. H. New Thiazole-Based Bis(Schiff Bases) Linked to Arene Units as Potential MRSA Inhibitors. Synth. Commun. 2022, 52, 2205–2218. DOI: 10.1080/00397911.2022.2134800.
  • Mohammad, H.; Reddy, P. N.; Monteleone, D.; Mayhoub, A. S.; Cushman, M.; Seleem, M. N. Synthesis and Antibacterial Evaluation of a Novel Series of Synthetic Phenylthiazole Compounds against Methicillin-Resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 2015, 94, 306–316. DOI: 10.1016/j.ejmech.2015.03.015.
  • Kamal, A.; Rahim, A.; Riyaz, S.; Poornachandra, Y.; Balakrishna, M.; Kumar, C. G.; Hussaini, S. M. A.; Sridhar, B.; Machiraju, P. K. Regioselective Synthesis, Antimicrobial Evaluation and Theoretical Studies of 2-Styryl Quinolines. Org. Biomol. Chem. 2015, 13, 1347–1357. DOI: 10.1039/c4ob02277g.
  • Daina, A.; Michielin, O.; Zoete, V. A. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. DOI: 10.1038/srep42717.
  • Arnott, J. A.; Planey, S. L. The Influence of Lipophilicity in Drug Discovery and Design. Expert Opin. Drug Discov. 2012, 7, 863–875. DOI: 10.1517/17460441.2012.714363.
  • Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of Octanol-Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. DOI: 10.1021/ci700257y.
  • Wildman, S. A.; Crippen, G. M. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873. DOI: 10.1021/ci990307l.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. DOI: 10.1016/s0169-409x(00)00129-0.
  • Lipinski, C. A. Lead-and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. DOI: 10.1016/j.ddtec.2004.11.007.
  • Teague, S.; Davis, A.; Leeson, P.; Oprea, T. The Design of Leadlike Combinatorial Libraries. Angew. Chem. Int. Ed. 1999, 38, 3743–3748. DOI: 10.1002/(SICI)1521-3773(19991216)38:243.0.CO;2-U.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.