Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 53, 2023 - Issue 13
229
Views
5
CrossRef citations to date
0
Altmetric
Articles

Development of pyrazolo[1,5-a]pyrimidine-based antibacterial agents

ORCID Icon, , , , , , & ORCID Icon show all
Pages 1053-1068 | Received 25 Jan 2023, Published online: 09 May 2023

References

  • Drev, M.; Grošelj, U.; Mevec, Š.; Pušavec, E.; Štrekelj, J.; Golobič, A.; Dahmann, G.; Stanovnik, B.; Svete, J. Regioselective Synthesis of 1-and 4-Substituted 7-Oxopyrazolo[1,5-a]Pyrimidine-3-Carboxamides. Tetrahedron. 2014, 70, 8267–8279. DOI: 10.1016/j.tet.2014.09.020.
  • Chauhan, M.; Kumar, R. Medicinal Attributes of Pyrazolo[3,4-d]Pyrimidines: A Review. Bioorg. Med. Chem. 2013, 21, 5657–5668. DOI: 10.1016/j.bmc.2013.07.027.
  • Cherukupalli, S.; Karpoormath, R.; Chandrasekaran, B.; Hampannavar, G. A.; Thapliyal, N.; Palakollu, V. N. An Insight on Synthetic and Medicinal Aspects of Pyrazolo[1,5-a]Pyrimidine Scaffold. Eur. J. Med. Chem. 2017, 126, 298–352. DOI: 10.1016/j.ejmech.2016.11.019.
  • Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Gratteri, P.; Bonaccini, C.; Malmberg Aiello, P.; Besnard, F.; et al. Synthesis and Benzodiazepine Receptor Affinity of Pyrazolo[1,5-a]Pyrimidine Derivatives. 3. New 6-(3-Thienyl) Series as α1 Selective Ligands. J. Med. Chem. 2003, 46, 310–313. DOI: 10.1021/jm020999w.
  • Modi, P.; Patel, S.; Chhabria, M. Structure-Based Design, Synthesis and Biological Evaluation of a Newer Series of Pyrazolo[1,5-a]Pyrimidine Analogues as Potential Anti-Tubercular Agents. Bioorg. Chem. 2019, 87, 240–251. DOI: 10.1016/j.bioorg.2019.02.044.
  • Selleri, S.; Bruni, F.; Costagli, C.; Costanzo, A.; Guerrini, G.; Ciciani, G.; Gratteri, P.; Besnard, F.; Costa, B.; Montali, M.; et al. A Novel Selective GABAA α1 Receptor Agonist Displaying Sedative and Anxiolytic-like Properties in Rodents. J. Med. Chem. 2005, 48, 6756–6760. DOI: 10.1021/jm058002n.
  • Suzuki, M.; Iwasaki, H.; Fujikawa, Y.; Sakashita, M.; Kitahara, M.; Sakoda, R. Synthesis and Biological Evaluations of Condensed Pyridine and Condensed Pyrimidine-Based HMG-CoA Reductase Inhibitors. Bioorg. Med. Chem. Lett. 2001, 11, 1285–1288. DOI: 10.1016/S0960-894X(01)00203-7.
  • Fraley, M. E.; Rubino, R. S.; Hoffman, W. F.; Hambaugh, S. R.; Arrington, K. L.; Hungate, R. W.; Bilodeau, M. T.; Tebben, A. J.; Rutledge, R. Z.; Kendall, R. L.; et al. Optimization of a Pyrazolo[1,5-a]Pyrimidine Class of KDR Kinase Inhibitors: improvements in Physical Properties Enhance Cellular Activity and Pharmacokinetics. Bioorg. Med. Chem. Lett. 2002, 12, 3537–3541. DOI: 10.1016/S0960-894X(02)00525-5.
  • Gopalsamy, A.; Yang, H.; Ellingboe, J. W.; Tsou, H. R.; Zhang, N.; Honores, E.; Powell, D.; Miranda, M.; McGinnis, J. P.; Rabindran, S. K. Pyrazolo[1,5-a]Pyrimidin-7-yl Phenyl Amides as Novel anti-Proliferative Agents: parallel Synthesis for Lead Optimization of Amide Region. Bioorg. Med. Chem. Lett. 2005, 15, 1591–1594. DOI: 10.1016/j.bmcl.2005.01.066.
  • Li, J.; Zhao, Y. F.; Zhao, X. L.; Yuan, X. Y.; Gong, P. Synthesis and anti‐Tumor Activities of Novel Pyrazolo[1,5‐a]Pyrimidines. Arch. Pharm. 2006, 339, 593–597. DOI: 10.1002/ardp.200600098.
  • Powell, D.; Gopalsamy, A.; Wang, Y. D.; Zhang, N.; Miranda, M.; McGinnis, J. P.; Rabindran, S. K. Pyrazolo[1,5-a]Pyrimidin-7-yl Phenyl Amides as Novel Antiproliferative Agents: Exploration of Core and Headpiece Structure–Activity Relationships. Bioorg. Med. Chem. Lett. 2007, 17, 1641–1645. DOI: 10.1016/j.bmcl.2006.12.116.
  • Williamson, D. S.; Parratt, M. J.; Bower, J. F.; Moore, J. D.; Richardson, C. M.; Dokurno, P.; Cansfield, A. D.; Francis, G. L.; Hebdon, R. J.; Howes, R.; et al. Structure-Guided Design of Pyrazolo[1,5-a]Pyrimidines as Inhibitors of Human Cyclin-Dependent Kinase 2. Bioorg. Med. Chem. Lett. 2005, 15, 863–867. DOI: 10.1016/j.bmcl.2004.12.073.
  • Heathcote, D. A.; Patel, H.; Kroll, S. H. B.; Hazel, P.; Periyasamy, M.; Alikian, M.; Kanneganti, S. K.; Jogalekar, A. S.; Scheiper, B.; Barbazanges, M.; et al. A Novel Pyrazolo[1,5-a]Pyrimidine is a Potent Inhibitor of Cyclin-Dependent Protein Kinases 1, 2, and 9, Which Demonstrates Antitumor Effects in Human Tumor Xenografts following Oral Administration. J. Med. Chem. 2010, 53, 8508–8522. DOI: 10.1021/jm100732t.
  • Mukaiyama, H.; Nishimura, T.; Kobayashi, S.; Komatsu, Y.; Kikuchi, S.; Ozawa, T.; Kamada, N.; Ohnota, H. Novel Pyrazolo[1,5-a]Pyrimidines as c-Src Kinase Inhibitors That Reduce IKr Channel Blockade. Bioorg. Med. Chem. 2008, 16, 909–921. DOI: 10.1016/j.bmc.2007.10.068.
  • Gommermann, N.; Buehlmayer, P.; Von Matt, A.; Breitenstein, W.; Masuya, K.; Pirard, B.; Furet, P.; Cowan-Jacob, S. W.; Weckbecker, G. New Pyrazolo[1,5-a]Pyrimidines as Orally Active Inhibitors of Lck. Bioorg. Med. Chem. Lett. 2010, 20, 3628–3631. DOI: 10.1016/j.bmcl.2010.04.112.
  • Labroli, M.; Paruch, K.; Dwyer, M. P.; Alvarez, C.; Keertikar, K.; Poker, C.; Rossman, R.; Duca, J. S.; Fischmann, T. O.; Madison, V.; et al. Discovery of Pyrazolo[1,5-a]Pyrimidine-Based CHK1 Inhibitors: A Template-Based approach-Part 2. Bioorg. Med. Chem. Lett. 2011, 21, 471–474. DOI: 10.1016/j.bmcl.2010.10.114.
  • Gopalsamy, A.; Ciszewski, G.; Hu, Y.; Lee, F.; Feldberg, L.; Frommer, E.; Kim, S.; Collins, K.; Wojciechowicz, D.; Mallon, R. Identification of Pyrazolo[1,5-a]Pyrimidine-3-Carboxylates as B-Raf Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 2735–2738. DOI: 10.1016/j.bmcl.2009.03.129.
  • Berger, D. M.; Torres, N.; Dutia, M.; Powell, D.; Ciszewski, G.; Gopalsamy, A.; Levin, J. I.; Kim, K.-H.; Xu, W.; Wilhelm, J.; et al. Non-Hinge-Binding Pyrazolo[1,5-a]Pyrimidines as Potent B-Raf Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 6519–6523. DOI: 10.1016/j.bmcl.2009.10.049.
  • Wang, X.; Magnuson, S.; Pastor, R.; Fan, E.; Hu, H.; Tsui, V.; Deng, W.; Murray, J.; Steffek, M.; Wallweber, H.; et al. Discovery of Novel Pyrazolo[1,5-a]Pyrimidines as Potent pan-Pim Inhibitors by Structure-and Property-Based Drug Design. Bioorg. Med. Chem. Lett. 2013, 23, 3149–3153. DOI: 10.1016/j.bmcl.2013.04.020.
  • Dwyer, M. P.; Keertikar, K.; Paruch, K.; Alvarez, C.; Labroli, M.; Poker, C.; Fischmann, T. O.; Mayer-Ezell, R.; Bond, R.; Wang, Y.; et al. Discovery of Pyrazolo[1,5-a]Pyrimidine-Based Pim Inhibitors: A Template-Based Approach. Bioorg. Med. Chem. Lett. 2013, 23, 6178–6182. DOI: 10.1016/j.bmcl.2013.08.110.
  • Fahim, A. M; Farag, A. M. Synthesis, Antimicrobial Evaluation, Molecular Docking and Theoretical Calculations of Novel Pyrazolo[1,5-a]Pyrimidine Derivatives. J. Mol. Struct. 2020, 1199, 127025. DOI: 10.1016/j.molstruc.2019.127025.
  • Fouda, A. M.; Abbas, H. A. S.; Ahmed, E. H.; Shati, A. A.; Alfaifi, M. Y.; Elbehairi, S. E. I. Synthesis, in Vitro Antimicrobial and Cytotoxic Activities of Some New Pyrazolo[1,5-a]Pyrimidine Derivatives. Molecules. 2019, 24, 1080. DOI: 10.3390/molecules24061080.
  • Al-Adiwish, W. M.; Tahir, M. I. M.; Siti-Noor-Adnalizawati, A.; Hashim, S. F.; Ibrahim, N.; Yaacob, W. A. Synthesis, Antibacterial Activity and Cytotoxicity of New Fused Pyrazolo[1,5-a]Pyrimidine and Pyrazolo[5,1-c][1,2,4]Triazine Derivatives from New 5-Aminopyrazoles. Eur. J. Med. Chem. 2013, 64, 464–476. DOI: 10.1016/j.ejmech.2013.04.029.
  • Zhang, J.; Peng, J. F.; Wang, T.; Wang, P.; Zhang, Z. T. Synthesis, Crystal Structure, Characterization and Antifungal Activity of Pyrazolo[1,5-a]Pyrimidines Derivatives. J. Mol. Struct. 2016, 1120, 228–233. DOI: 10.1016/j.molstruc.2016.05.026.
  • Zhang, J.; Peng, J. F.; Bai, Y. B.; Wang, P.; Wang, T.; Gao, J. M.; Zhang, Z. T. Synthesis of Pyrazolo[1,5-a]Pyrimidine Derivatives and Their Antifungal Activities against Phytopathogenic Fungi in Vitro. Mol. Divers. 2016, 20, 887–896. DOI: 10.1007/s11030-016-9690-y.
  • Ram, V. J.; Nath, M. Regioselective Synthesis of Substituted and Fused Pyrazolo[1,5-a] Pyrimidines as Leishmanicides. Indian J. Chem., Sect. B. 1995, 34, 416–422.
  • Ayman, R.; Radwan, A. M.; Elmetwally, A. M.; Ammar, Y. A.; Ragab, A. Discovery of Novel Pyrazole and Pyrazolo[1,5‐a]Pyrimidine Derivatives as Cyclooxygenase Inhibitors (COX‐1 and COX‐2) Using Molecular Modeling Simulation. Arch. Pharm. 2023, 356, e2200395. DOI: 10.1002/ardp.202200395.
  • Hassan, A. S.; Hafez, T. S.; Osman, S. A. Synthesis, Characterization, and Cytotoxicity of Some New 5-Aminopyrazole and Pyrazolo[1,5-a]Pyrimidine Derivatives. Sci. Pharm. 2015, 83, 27–39. DOI: 10.3797/scipharm.1409-14.
  • Li, Y.; Gao, W.; Li, F.; Wang, J.; Zhang, J.; Yang, Y.; Zhang, S.; Yang, L. An in Silico Exploration of the Interaction Mechanism of Pyrazolo[1,5-a]Pyrimidine Type CDK2 Inhibitors. Mol. Biosyst. 2013, 9, 2266–2281. DOI: 10.1039/C3MB70186G.
  • Yu, P. B.; Hong, C. C.; Sachidanandan, C.; Babitt, J. L.; Deng, D. Y.; Hoyng, S. A.; Lin, H. Y.; Bloch, K. D.; Peterson, R. T. Dorsomorphin Inhibits BMP Signals Required for Embryogenesis and Iron Metabolism. Nat. Chem. Biol. 2008, 4, 33–41. DOI: 10.1038/nchembio.2007.54.
  • Khalil, K. D.; Al-Matar, H. M.; Doa’a, M.; Elnagdi, M. H. Studies with Enaminones and Enaminonitriles: Synthesis of 3-Aroyl and 3-Heteroaroyl-Pyrazolo[1,5-a]Pyrimidines. Tetrahedron. 2009, 65, 9421–9427. DOI: 10.1016/j.tet.2009.08.084.
  • Al-Etaibi, A. M.; Al-Awadi, N. A.; El-Apasery, M. A.; Ibrahim, M. R. Synthesis of Some Novel Pyrazolo[1,5-a]Pyrimidine Derivatives and Their Application as Disperse Dyes. Molecules. 2011, 16, 5182–5193. DOI: 10.3390/molecules16065182.
  • Hussein, A. M. Synthesis of Some New Purine-Related Compounds: Regioselective One-Pot Synthesis of New Tetrazolo[1,5-a]Pyrimidine, Pyrazolo[1,5-a]Pyrimidine and Pyrimido[1,6-a]Pyrimidine Derivatives. J. Saudi Chem. Soc. 2010, 14, 61–68. DOI: 10.1016/j.jscs.2009.12.010.
  • Abdelhamid, A. O.; El‐Idreesy, T. T.; Abdelriheem, N. A.; Dawoud, H. R. Green One‐Pot Solvent‐Free Synthesis of Pyrazolo[1,5‐a]Pyrimidines. J. Heterocyclic Chem. 2016, 53, 710–718. DOI: 10.1002/jhet.2343.
  • Hassan, A. S.; Masoud, D. M.; Sroor, F. M.; Askar, A. A. Synthesis and Biological Evaluation of Pyrazolo[1,5-a]Pyrimidine-3-Carboxamide as Antimicrobial Agents. Med. Chem. Res. 2017, 26, 2909–2919. DOI: 10.1007/s00044-017-1990-y.
  • Hassan, A. S.; Mady, M. F.; Awad, H. M.; Hafez, T. S. Synthesis and Antitumor Activity of Some New Pyrazolo[1,5-a]Pyrimidines. Chin. Chem. Lett. 2017, 28, 388–393. DOI: 10.1016/j.cclet.2016.10.022.
  • Metwally, N. H.; Koraa, T. H.; Sanad, S. M. H. Green One-Pot Synthesis and in Vitro Antibacterial Screening of Pyrano[2,3-c]Pyrazoles, 4H-Chromenes and Pyrazolo[1,5-a]Pyrimidines Using Biocatalyzed Pepsin. Synth. Commun. 2022, 52, 1139–1154. DOI: 10.1080/00397911.2022.2074301.
  • Sanad, S. M. H.; Mekky, A. E. 3-Aminopyrazolo[3,4-b]Pyridine: Effective Precursor for Barium Hydroxide-Mediated Three Components Synthesis of New Mono- and Bis(Pyrimidines) with Potential Cytotoxic Activity. Chem. Biodivers. 2022, 19, e202100500. DOI: 10.1002/cbdv.202100500.
  • Sanad, S. M. H.; Ahmed, M. S. M.; Mekky, A. E. M.; Abdallah, Z. A. Regioselective Synthesis and Theoretical Calculations of Bis(Pyrido[2',3':3,4]Pyrazolo[1,5-a]Pyrimidines) Linked to Benzofuran Units via Piperazine Spacer: A DFT, MM2, and MMFF94 Study. J. Mol. Struct. 2021, 1243, 130802. DOI: 10.1016/j.molstruc.2021.130802.
  • Sadek, K. U.; Mekheimer, R. A.; Mohamed, T. M.; Moustafa, M. S.; Elnagdi, M. H. Regioselectivity in the Multicomponent Reaction of 5-Aminopyrazoles, Cyclic 1,3-Diketones and Dimethylformamide Dimethylacetal Under Controlled Microwave Heating. Beilstein J. Org. Chem. 2012, 8, 18–24. DOI: 10.3762/bjoc.8.3.
  • Wu, Y. C.; Li, H. J.; Liu, L.; Wang, D.; Yang, H. Z.; Chen, Y. J. Efficient Construction of Pyrazolo[1,5-a]Pyrimidine Scaffold and Its Exploration as a New Heterocyclic Fluorescent Platform. J. Fluoresc. 2008, 18, 357–363. DOI: 10.1007/s10895-007-0275-0.
  • Kim, J.; Singaram, B. Enantioselective Reduction of Aliphatic Ketones Using NaBH4 and TarB–NO2, a Chiral Boronic Ester. Tetrahedron Lett. 2006, 47, 3901–3903. DOI: 10.1016/j.tetlet.2007.11.054.
  • Mekky, A. E. M.; Ahmed, M. S. M.; Sanad, S. M. H.; Abdallah, Z. A. Bis(Benzofuran-Enaminone) Hybrid Possessing Piperazine Linker: Versatile Precursor for Microwave Assisted Synthesis of Bis(Pyrido[2',3':3,4]Pyrazolo[1,5-a]Pyrimidines). Synth. Commun. 2021, 51, 1085–1099. DOI: 10.1080/00397911.2020.1867745.
  • Dwyer, M. P.; Paruch, K.; Labroli, M.; Alvarez, C.; Keertikar, K. M.; Poker, C.; Rossman, R.; Fischmann, T. O.; Duca, J. S.; Madison, V.; et al. Discovery of Pyrazolo[1,5-a]Pyrimidine-Based CHK1 Inhibitors: A Template-Based approach-Part 1. Bioorg. Med. Chem. Lett. 2011, 21, 467–470. DOI: 10.1016/j.bmcl.2010.10.113.
  • Stepaniuk, O. O.; Matviienko, V. O.; Kondratov, I. S.; Vitruk, I. V.; Tolmachev, A. O. Synthesis of New Pyrazolo[1,5-a]Pyrimidines by Reaction of β,γ-Unsaturated γ-Alkoxy-α-Keto Esters with N-Unsubstituted 5-Aminopyrazoles. Synthesis 2013, 45, 925–930. DOI: 10.1055/s-0032-1318329.
  • Mekky, A. E. M.; Sanad, S. M. H. [ 3 + 2] Cycloaddition Synthesis of New Piperazine-Linked Bis(Chromene) Hybrids Possessing Pyrazole Units as Potential Acetylcholinesterase Inhibitors. Chem. Biodivers. 2023, 20, e202200518. DOI: 10.1002/cbdv.202200518.
  • Sanad, S. M. H.; Mekky, A. E. M. Three-Component Regioselective Synthesis and Antibacterial Evaluation of New Arene-Linked Bis(Pyrazolo[1,5-a]Pyrimidine) Hybrids. Synth. Commun. 2023, 53, 658–672. DOI: 10.1080/00397911.2023.2191854.
  • Abdallah, Z. A.; Sanad, S. M. H.; Mekky, A. E. M.; Ahmed, M. S. M. New Arylazo-Based (Chromene-Thiazole) Hybrids as Potential MRSA Inhibitors. Chem. Biodiversity. 2023, 20, e202300206. DOI: 10.1016/10.1002/cbdv.202300206.
  • Sanad, S. M. H; Mekky, A. E. M. New Thieno[2,3-b]Pyridine-Fused Pyrimidin-4(3H)-Ones as Potential Thymidylate Synthase Inhibitors: Synthesis, SAR, in Vitro and in Silico Study. J. Mol. Struct. 2023, 1282, 135236. DOI: 10.1016/j.molstruc.2023.135236.
  • Sanad, S. M. H.; Abdel Fattah, A. M.; Attaby, F. A.; Elneairy, M. A. A. Pyridine-2(1H)-Thiones: Versatile Precursors for Novel Pyrazolo[3,4-b]Pyridine, Thieno[2,3-b]Pyridines and Their Fused Azines. J. Heterocyclic Chem. 2019, 56, 1588–1597. DOI: 10.1002/jhet.3444.
  • Sanad, S. M. H.; Mekky, A. E. M. Enaminone Incorporating a Dibromobenzofuran Moiety: Versatile Precursor for Novel Azines and Azolotriazines. J. Heterocyclic Chem. 2018, 55, 836–843. DOI: 10.1002/jhet.3107.
  • Sanad, S. M. H.; Hawass, M. A. E.; Ahmed, A. A. M.; Elneairy, M. A. A. Facile Synthesis and Characterization of Novel Pyrido[3',2':4,5]Thieno[3,2-d]Pyrimidin-4(3H)-One and Pyrido[2',3':3,4]Pyrazolo-[1,5-a]Pyrimidine Incorporating 1,3-Diarylpyrazole Moiety. Synth. Commun. 2018, 48, 1847–1856. DOI: 10.1080/00397911.2018.1468911.
  • Sanad, S. M. H.; Hawass, M. A. E.; Ahmed, A. A. M.; Elneairy, M. A. A. Efficient Synthesis and Characterization of Novel Pyrido[3',2':4,5]Thieno[3,2-d]Pyrimidines and Their Fused [1,2,4]Triazole Derivatives. J. Heterocycl. Chem. 2018, 55, 2823–2833. DOI: 10.1002/jhet.3352.
  • Vaquero, J. J.; Fuentes, L.; Del Castillo, J. C.; Perez, M. I.; Garcia, J. L.; Soto, J. L. The Reactions of Benzylmalononitriles with Hydrazine and Hydroxylamine: synthesis of Pyrazoles, Isoxazoles, and Pyrazolo[1,5-a]Pyrimidine Derivatives. Synthesis. 1987, 1987, 33–35. DOI: 10.1055/s-1987-27831.
  • Cankař, P.; Jedinák, L.; Kryštof, V. The Synthesis of Some Derivatives Based on the 4-Benzyl-1H-Pyrazole-3, 5-Diamine Core. Heterocycles. 2011, 83, 371. DOI: 10.1002/chin.201124115.
  • Castillo, J. C.; Rosero, H. A.; Portilla, J. Simple Access Toward 3-Halo-and 3-Nitro-Pyrazolo[1,5-a]Pyrimidines Through a One-Pot Sequence. RSC Adv. 2017, 7, 28483–28488. DOI: 10.1039/C7RA04336H.
  • Kibou, Z.; Aissaoui, N.; Daoud, I.; Seijas, J. A.; Vázquez-Tato, M. P.; Khelil, N. K.; Choukchou-Braham, N. Efficient Synthesis of 2-Aminopyridine Derivatives: Antibacterial Activity Assessment and Molecular Docking Studies. Molecules. 2022, 27, 3439. DOI: 10.3390/molecules27113439.
  • Tseng, S. S.; Epstein, J. W.; Brabander, H. J.; Francisco, G. A Simple Regioselective Synthesis of Pyrimido[1,2‐a]Benzimidazoles. J. Heterocycl. Chem. 1987, 24, 837–843. DOI: 10.1002/jhet.5570240357.
  • Mekky, A. E. M.; Sanad, S. M. H. New Thiazole-Based Bis(Schiff Bases) Linked to Arene Units as Potential MRSA Inhibitors. Synth. Commu. 2022, 52, 2205–2218. DOI: 10.1080/00397911.2022.2134800.
  • Mekky, A. E. M.; Sanad, S. M. H.; Abdelfattah, A. M. Tandem Synthesis, Antibacterial Evaluation and SwissADME Prediction Study of New Bis(1,3,4-Oxadiazoles) Linked to Arene Units. Mendeleev. Commun. 2022, 32, 612–614. DOI: 10.1016/j.mencom.2022.09.014.
  • Mohammad, H.; Reddy, P. N.; Monteleone, D.; Mayhoub, A. S.; Cushman, M.; Seleem, M. N. Synthesis and Antibacterial Evaluation of a Novel Series of Synthetic Phenylthiazole Compounds against Methicillin-Resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 2015, 94, 306–316. DOI: 10.1016/j.ejmech.2015.03.015.
  • Kamal, A.; Rahim, A.; Riyaz, S.; Poornachandra, Y.; Balakrishna, M.; Kumar, C. G.; Hussaini, S. M. A.; Sridhar, B.; Machiraju, P. K. Regioselective Synthesis, Antimicrobial Evaluation and Theoretical Studies of 2-Styryl Quinolines. Org. Biomol. Chem. 2015, 13, 1347–1357. DOI: 10.1039/c4ob02277g.
  • Gad, E. M.; Nafie, M. S.; Eltamany, E. H.; Hammad, M. S. A. G.; Barakat, A.; Boraei, A. T. A. Discovery of New Apoptosis-Inducing Agents for Breast Cancer Based on Ethyl 2-Amino-4,5,6,7-Tetrahydrobenzo[b]Thiophene-3-Carboxylate: Synthesis, in Vitro, and in Vivo Activity Evaluation. Molecules. 2020, 25, 2523. DOI: 10.3390/molecules25112523.
  • Elsherif, M. A.; Hassan, A. S.; Moustafa, G. O.; Awad, H. M.; Morsy, N. M. Antimicrobial Evaluation and Molecular Properties Prediction of Pyrazolines Incorporating Benzofuran and Pyrazole Moieties. J. Appl. Pharm. Sci. 2020, 10, 37–43. DOI: 10.7324/JAPS.2020.102006.
  • Daina, A.; Michielin, O.; Zoete, V. A. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci Rep. 2017, 7, 42717. DOI: 10.1038/srep42717.
  • Arnott, J. A.; Planey, S. L. The Influence of Lipophilicity in Drug Discovery and Design. Expert Opin. Drug Discov. 2012, 7, 863–875. DOI: 10.1517/17460441.2012.714363.
  • Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of Octanol-Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. DOI: 10.1021/ci700257y.
  • Wildman, S. A.; Crippen, G. M. Prediction of Physicochemical Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 868–873. DOI: 10.1021/ci990307l.
  • Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. DOI: 10.1016/s0169-409x(00)00129-0.
  • Delaney, J. S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. DOI: 10.1021/ci034243x.
  • Lipinski, C. A. Lead-and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. DOI: 10.1016/j.ddtec.2004.11.007.
  • Teague, S.; Davis, A.; Leeson, P.; Oprea, T. The Design of Leadlike Combinatorial Libraries. Angew. Chem. Int. Ed. 1999, 38, 3743–3748. DOI: 10.1002/(SICI)1521-3773(19991216)38:243.0.CO;2-U.
  • Daina, A.; Zoete, V. A. A Boiled‐Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016, 11, 1117–1121. DOI: 10.1002/cmdc.201600182.
  • Sicak, Y. Design and Antiproliferative and Antioxidant Activities of Furan-Based Thiosemicarbazides and 1,2,4-Triazoles: their Structure-Activity Relationship and SwissADME Predictions. Med. Chem. Res. 2021, 30, 1557–1568. DOI: 10.1007/s00044-021-02756-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.