Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 10
69
Views
0
CrossRef citations to date
0
Altmetric
Articles

Synthesis and biological evaluation of tetrazole ring incorporated oxazole-pyrimidine derivatives as anticancer agents

, , , &
Pages 802-814 | Received 14 Dec 2023, Published online: 07 Apr 2024

References

  • Xie, F.; Zhao, H.; Zhao, L.; Lou, L.; Hu, Y. Synthesis and Biological Evaluation of Novel 2,4,5-Substituted Pyrimidine Derivatives for Anticancer Activity. Bioorg. Med. Chem. Lett. 2009, 19, 275–278. DOI: 10.1016/j.bmcl.2008.09.067.
  • Kaldrikyan, M. A.; Grigoryan, L. A.; Geboyan, V. A.; Arsenyan, F. G.; Stepanyan, G. M.; Garibdzhanyan, B. T. Synthesis and Antitumor Activity of Some Disubstituted 5-(3-Methyl-4-Alkoxybenzyl)Pyrimidines. Pharm. Chem. J. 2000, 34, 521–524. DOI: 10.1007/BF02524576.
  • Su, L.; Li, J.; Zhou, Z.; Huang, D.; Zhang, Y.; Pei, H.; Guo, W.; Wu, H.; Wang, X.; Liu, M.; et al. Corrigendum to “Design, Synthesis and Evaluation of Hybrid of Tetrahydrocarbazole with 2,4-Diaminopyrimidine Scaffold as Antibacterial Agents” [Eur. J. Med. Chem. 162 (162) (2019) 203-211]. Eur. J. Med. Chem. 2019, 168, 385. DOI: 10.1016/j.ejmech.2019.02.059.
  • Barakat, A.; Soliman, S. M.; Al-Majid, A. M.; Lotfy, G.; Ghabbour, H. A.; Fun, H. K.; Yousuf, S.; Choudhary, M. I.; Wadood, A. Synthesis and Structure Investigation of Novel Pyrimidine-2,4,6-Trione Derivatives of Highly Potential Biological Activity as anti-Diabetic Agent. J. Mol. Struct. 2015, 1098, 365–376. DOI: 10.1016/j.molstruc.2015.06.037.
  • Kaur, H.; Machado, M.; de Kock, C.; Smith, P.; Chibale, K.; Prudêncio, M.; Singh, K. Primaquine–Pyrimidine Hybrids: Synthesis and Dual-Stage Antiplasmodial activityEur. Eur. J. Med. Chem. 2015, 101, 266–273. DOI: 10.1016/j.ejmech.2015.06.045.
  • Desai, N. C.; Kotadiya, G. M.; Trivedi, A. R. Studies on Molecular Properties Prediction, Antitubercular and Antimicrobial Activities of Novel Quinoline Based Pyrimidine Motifs. Bioorg. Med. Chem. Lett. 2014, 24, 3126–3130. DOI: 10.1016/j.bmcl.2014.05.002.
  • Padmaja, A.; Payani, T.; Reddy, G. D.; Padmavathi, V. Synthesis, Antimicrobial and Antioxidant Activities of Substituted Pyrazoles, Isoxazoles, Pyrimidine and Thioxopyrimidine Derivatives. Eur. J. Med. Chem. 2009, 44, 4557–4566. DOI: 10.1016/j.ejmech.2009.06.024.
  • Morris, G. W.; Iams, T. A.; Slepchenko, K. G.; McKee, E. E. Origin of Pyrimidine Deoxyribonucleotide Pools in Perfused Rat Heart: implications for 3’-Azido-3’-Deoxythymidine-Dependent Cardiotoxicity. Biochem. J. 2009, 422, 513–520. DOI: 10.1042/BJ20082427.
  • Jain, K. S.; Chitre, T. S.; Miniyar, P. B.; Kathiravan, M. K.; Bendre, V. S.; Veer, V. S.; Shahane, S. R. Shishoo.Biological and Medicinal Significance of Pyrimidines. J. Curr. Sci. 2006, 90, 793–803.
  • Trivedi, A. R.; Siddiqui, A. B.; Shah, V. H. Design, Synthesis, Characterization and Antitubercular Activity of Some 2-Heterocycle-Substituted Phenothiazines. Arkivoc 2008, 2008, 210–217. DOI: 10.3998/ark.5550190.0009.223.
  • Majeed, J.; Shaharyar, M. Synthesis and in Vivo Diuretic Activity of Some Novel Pyrimidine Derivatives. J. Enzyme Inhib. Med. Chem. 2011, 26, 819–826. DOI: 10.3109/14756366.2011.557022.
  • Guagnano, V.; Furet, P.; Spanka, C.; Bordas, V.; Le Douget, M.; Stamm, C.; Brueggen, J.; Jensen, M. R.; Schnell, C.; Schmid, H.; et al. Discovery of 3-(2,6-Dichloro-3,5-Dimethoxy-Phenyl)-1-{6-[4-(4-Ethyl-Piperazin-1-yl)-Phenylamino]-Pyrimidin-4-yl}-1-Methyl-Urea (NVP-BGJ398), a Potent and Selective Inhibitor of the Fibroblast Growth Factor Receptor Family of Receptor Tyrosine Kinase. J. Med. Chem. 2011, 54, 7066–7083. DOI: 10.1021/jm2006222.
  • Zubarev, V. Y.; Ostrovskii, V. A. Methods for the Synthesis of Mono- and Polynuclear NH-Tetrazoles. Chem. Heterocycl. Compd. 2000, 36, 759–774. DOI: 10.1007/BF02256907.
  • Bladin, J. A. Ueber Von DicyanphenylhydrazinabgeleiteteVerbindungen. Ber. Dtsch. Chem. Ges. 1885, 18, 1544–1551. DOI: 10.1002/cber.188501801335.
  • Gundugola, A. S.; Chandra, K. L.; Perchellet, E. M.; Waters, A. M.; Perchellet, J.-P. H.; Rayat, S. Synthesis and Antiproliferative Evaluation of 5-Oxo and 5-Thio Derivatives of 1,4-Diaryl tetrazolesBioorg. Bioorg. Med. Chem. Lett. 2010, 20, 3920–3924. DOI: 10.1016/j.bmcl.2010.05.012.
  • Yeung, K.-S.; Qiu, Z.; Yang, Z.; Zadjura, L.; D’Arienzo, C. J.; Browning, M. R.; Hansel, S.; Huang, X. S.; Eggers, B. J.; Riccardi, K.; et al. Inhibitors of HIV-1 Attachment. Part 9: An Assessment of Oral Prodrug Approaches to Improve the Plasma Exposure of a Tetrazole-Containing Derivative. Bioorg. Med. Chem. Lett. 2013, 23, 209–212. DOI: 10.1016/j.bmcl.2012.10.125.
  • Janssens, F. E.; Sommen, F. M.; Surleraux, D. L. N. G.; Leenaerts, J. E.; Van Roosbroeck, Y. E. M. EP 4660 9716440, 1997.
  • Luo, Y. P.; Gong, Q.; Chen, Q.; Yang, G. F. Chin. J. Org. Chem. 2008, 28, 1561–1565. DOI: 10.1016/j.cclet.2017.02.002.
  • Andres-Gil, J. I.; Alcazar-Vaca, M. J.; Pastor-Fernandez, J.; Drinkenburg, W. H. I. M.; Langlois, X. J. M.; Oyarzabal-Santamarina, J.; Vega-Ramiro, J. A. EP 56951 2006067139, 2006.
  • Romagnoli, R.; Baraldi, P. G.; Salvador, M. K.; Preti, D.; Aghazadeh Tabrizi, M.; Brancale, A.; Fu, X.-H.; Li, J.; Zhang, S.-Z.; Hamel, E.; et al. Synthesis and Evaluation of 1,5-Disubstituted Tetrazoles as Rigid Analogues of Combretastatin A-4 with Potent Antiproliferative and Antitumor Activity. J. Med. Chem. 2012, 55, 475–488. DOI: 10.1021/jm2013979.
  • Bertinaria, M.; Shaikh, M. A. A. G.; Buccellati, C.; Cena, C.; Rolando, B.; Lazzarato, L.; Fruttero, R.; Gasco, A.; Hoxha, M.; Capra, V.; et al. A Self-Complexing and Self-Assembling Pillar[5]Arene. Chem. Med. Chem. 2012, 7, 1647–1660. DOI: 10.1002/cmdc.201200272.
  • Shih, T. L.; Candelore, M. R.; Cascieri, M. A.; Chiu, S. H.; Colwell, L. F.; Deng, L.; Feeney, W. P.; Forrest, M. J.; Hom, G. J.; MacIntyre, D. E.; et al. L-770,644: A Potent and Selective Human β3 Adrenergic Receptor Agonist with Improved Oral Bioavailability. Bioorg. Med. Chem. Lett. 1999, 9, 1251–1254. DOI: 10.1016/S0960-894X(99)00182-1.
  • Diwakar, S. D.; Bhagwat, S. S.; Shingare, M. S.; Gill, C. H. Substituted 3-((Z)-2-(4-Nitrophenyl)-2-(1H-Tetrazol-5-yl) Vinyl)-4H-Chromen-4-Ones as Novel anti-MRSA Agents: Synthesis, SAR, and in-Vitro Assessment. Bioorg. Med. Chem. Lett. 2008, 18, 4678–4681. DOI: 10.1016/j.bmcl.2008.07.007.
  • Trécant, C.; Dlubala, A.; George, P.; Pichat, P.; Ripoche, I.; Troin, Y. Synthesis and Biological Evaluation of Analogues of M6G. Eur. J. Med. Chem. 2011, 46, 4035–4041. DOI: 10.1016/j.ejmech.2011.05.076.
  • Cirino, G.; Mirone, V.; Ignarro, L. J.; Del Soldato, P. EP 50779 2004043443, 2004.
  • Show-Reid, C. A.; Miller, M. D.; Hazuda, D. J.; Ferrer, M.; Sur, S. M.; Summa, V.; Lyle, T. A.; Kinzel, O.; Pescatore, G.; Muraglia, E.; et al. U.S. 16671 2005115147, 2005.
  • Lee, P. Y.; Chang, W. N.; Lu, C. H.; Lin, M. W.; Cheng, B. C.; Chien, C. C.; Chang, C.; Chang, H. W. Clinical Features and in Vitro Antimicrobial Susceptibilities of Community-Acquired Klebsiella Pneumoniae Meningitis in Taiwan. J. Antimicrob. Chemother. 2003, 51, 957–962. DOI: 10.1093/jac/dkg158.
  • Tan, L.; Akahane, K.; McNally, R.; Reyskens, K. M.; Ficarro, S. B.; Liu, S.; Herter-Sprie, G. S.; Koyama, S.; Pattison, M. J.; Labella, K.; et al. Development of Selective Covalent Janus Kinase 3 Inhibitors. J. Med. Chem. 2015, 58, 6589–6606. DOI: 10.1021/acs.jmedchem.5b00710.
  • Calderon, A.; Soldan, S. S.; De Leo, A.; Deng, Z.; Frase, D. M.; Anderson, E. M.; Zhang, Y.; Vladimirova, O.; Lu, F.; Leung, J. C.; et al. Identification of Mubritinib (TAK 165) as an Inhibitor of KSHV Driven Primary Effusion Lymphoma via Disruption of Mitochondrial OXPHOS Metabolism. Oncotarget 2020, 11, 4224–4242. DOI: 10.18632/oncotarget.27815.
  • Simov, V.; Deshmukh, S. V.; Dinsmore, C. J.; Elwood, F.; Fernandez, R. B.; Garcia, Y.; Gibeau, C.; Gunaydin, H.; Jung, J.; Katz, J. D.; et al. Structure-Based Design and Development of (Benz)Imidazole Pyridones as JAK1-Selective Kinase Inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 1803–1808. DOI: 10.1016/j.bmcl.2016.02.035.
  • Escós, A.; Risco, A.; Alsina-Beauchamp, D.; Cuenda, A. p38γ and p38δ Mitogen Activated Protein Kinases (MAPKs), New Stars in the MAPK Galaxy. Front. Cell Dev. Biol. 2016, 4, 31. DOI: 10.3389/fcell.2016.00031.
  • Qin, Y.; Zhou, Z. W.; Pan, S. T.; He, Z. X.; Zhang, X.; Qiu, J. X.; Duan, W.; Yang, T.; Zhou, S. F. Graphene Quantum Dots Induce Apoptosis, Autophagy, and Inflammatory Response via p38 Mitogen-Activated Protein Kinase and Nuclear Factor-κB Mediated Signaling Pathways in Activated THP-1 Macrophages. Toxicology 2015, 327, 62–76. DOI: 10.1016/j.tox.2014.10.011.
  • Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.; Hopkins, A. L. Quantifying the Chemical Beauty of Drugs. Nat. Chem. 2012, 4, 90–98. DOI: 10.1038/nchem.1243.
  • Morris, G. M.; Goodsell, D. S.; Huey, R.; Hart, W. E.; Halliday, S.; Belew, R.; Olson, A. J. 2001. AutoDock. Automated Docking of Flexible Ligands to receptor-User Guide.
  • Martin, T. User’s Guide for TEST (Toxicity Estimation Software Tool) Version 5.1-a Java Application to Estimate Toxicities and Physical Properties from Molecular Structure; US Enviornmental Protection Agency: Washington, DC, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.