20
Views
0
CrossRef citations to date
0
Altmetric
Report

Effect of strain rate and temperature on the crystallization behavior of amorphous poly(ethylene terephthalate) fibers during superdrawing

, , & ORCID Icon
Received 27 Nov 2023, Accepted 17 Apr 2024, Published online: 03 May 2024

References

  • Allison, S. W., & Ward, I. M. (1967). The cold drawing of polyethylene terephthalate. British Journal of Applied Physics, 18(8), 1151–1164. https://doi.org/10.1088/0508-3443/18/8/316
  • Aneja, A. P. (2004). Circumferential superdrawing of hollow poly(ethylene terephthalate) filaments. Textile Research Journal, 74(4), 365–372. https://doi.org/10.1177/004051750407400414
  • Aneja, A. P. (2005). Efficient circumferential superdrawing. Journal of Applied Polymer Science, 97(1), 123–127. https://doi.org/10.1002/app.21739
  • Aneja, A. P., & Wang, Y. (2007). Steam-induced circumferential superdrawing of hollow poly(ethylene terephthalate) fibres. Journal of the Textile Institute, 98(2), 127–136. https://doi.org/10.1533/joti.2005.0221
  • Avrami, M. (1939). Kinetics of phase change. I general theory. The Journal of Chemical Physics, 7(12), 1103–1112. https://doi.org/10.1063/1.1750380
  • Blundell, D. J., MacKerron, D. H., Fuller, W., Mahendrasingam, A., Martin, C., Oldman, R. J., Rule, R. J., & Riekel, C. (1996). Characterization of strain-induced crystallization of poly (ethylene terephthalate) at fast draw rates using synchrotron radiation. Polymer, 37(15), 3303–3311. https://doi.org/10.1016/0032-3861(96)88476-X
  • Boyce, M. C., Socrate, S., & Llana, P. G. (2000). Constitutive model for the finite deformation stress–strain behavior of poly (ethylene terephthalate) above the glass transition. Polymer, 41(6), 2183–2201. https://doi.org/10.1016/S0032-3861(99)00406-1
  • Dargent, E., Bureau, E., Delbreilh, L., Zumailan, A., & Saiter, J. M. (2005). Effect of macromolecular orientation on the structural relaxation mechanisms of poly (ethylene terephthalate). Polymer, 46(9), 3090–3095. https://doi.org/10.1016/j.polymer.2005.01.096
  • DuPont. U. K. Patent (1953). 695567, Dec. 8.
  • Fernandez, J. O., & Swallowe, G. M. (2000). Crystallisation of PET with strain, strain rate and temperature. Journal of Materials Science, 35(17), 4405–4414. https://doi.org/10.1023/A:1004817325954
  • Forestier, E., Combeaud, C., Guigo, N., Sbirrazzuoli, N., & Billon, N. (2020). Understanding of strain-induced crystallization developments scenarios for polyesters: Comparison of poly(ethylene furanoate), PEF, and poly(ethylene terephthalate), PET. Polymer, 203, 122755. https://doi.org/10.1016/j.polymer.2020.122755
  • Gupta, V. B., & Kumar, S. (1979). Intrinsic birefringence of poly (ethylene terephthalate). Journal of Polymer Science: Polymer Physics Edition, 17(8), 1307–1315. https://doi.org/10.1002/pol.1979.180170803
  • Gupta, V. B., Sett, S. K., & Venkataraman, A. (1990). Flow‐drawing of poly (ethylene terephthalate). Polymer Engineering & Science, 30(19), 1252–1257. https://doi.org/10.1002/pen.760301909
  • Hamidi, A., Abhiraman, A. S., & Asher, P. (1983). Melt spinning of poly (ethylene terephthalate) - Structural transitions in a range of spinning speeds. Journal of Applied Polymer Science, 28(2), 567–578. https://doi.org/10.1002/app.1983.070280212
  • Hamonic, F., Miri, V., Saiter, A., & Dargent, E. (2014). Rigid amorphous fraction versus oriented amorphous fraction in uniaxially drawn polyesters. European Polymer Journal, 58, 233–244. https://doi.org/10.1016/j.eurpolymj.2014.06.014
  • Heuvel, H. M., & Huisman, R. (1978). Effect of winding speed on the physical structure of as‐spun poly (ethylene terephthalate) fibers, including orientation‐induced crystallization. Journal of Applied Polymer Science, 22(8), 2229–2243. https://doi.org/10.1002/app.1978.070220815
  • Hong, P. D., Chung, W. T., & Hsu, C. F. (2002). Crystallization kinetics and morphology of poly (trimethylene terephthalate). Polymer, 43(11), 3335–3343. https://doi.org/10.1016/S0032-3861(02)00163-5
  • Hotter, J. F., Cuculo, J. A., Tucker, P. A., & Annis, B. K. (1998). Effect of initial take‐up speed on properties and structure of as‐spun and drawn/heat‐set poly (ethylene terephthalate) filaments. Journal of Applied Polymer Science, 69(11), 2115–2131. https://doi.org/10.1002/(SICI)1097-4628(19980912)69:11<2115::AID-APP3>3.0.CO;2-J
  • Hristov, H. A., & Schultz, J. M. (1990). Thermal response and structure of PET fibers. Journal of Polymer Science Part B: Polymer Physics, 28(10), 1647–1663. https://doi.org/10.1002/polb.1990.090281001
  • Hristov, H. A., Hearle, J. W. S., Schultz, J. M., & Kennedy, A. D. (1995). Rapid mechanical deformation of poly (ethylene terephthalate) fibers at temperatures above the glass transition. Journal of Polymer Science Part B: Polymer Physics, 33(1), 125–133. https://doi.org/10.1002/polb.1995.090330113
  • Huijts, R. A., & Peters, S. M. (1994). The relation between molecular orientation and birefringence in PET and PEN fibres. Polymer, 35(14), 3119–3121. https://doi.org/10.1016/0032-3861(94)90429-4
  • Jabarin, S. A. (1987). Crystallization kinetics of polyethylene terephthalate. I. Isothermal crystallization from the melt. Journal of Applied Polymer Science, 34(1), 85–96. https://doi.org/10.1002/app.1987.070340107
  • LeBourvellec, G., Monnerie, L., & Jarry, J. P. (1986). Amorphous orientation and induced crystallization in uniaxially stretched poly (ethylene terephthalate glycol). Polymer, 27(6), 856–860. https://doi.org/10.1016/0032-3861(86)90294-6
  • Liu, Y., Yin, L., Zhao, H., Song, G., Tang, F., Wang, L., Shao, H., & Zhang, Y. (2017). Strain-induced structural evolution during drawing of poly (ethylene terephthalate) fiber at different temperatures by in situ synchrotron SAXS and WAXD. Polymer, 119, 185–194. https://doi.org/10.1016/j.polymer.2017.05.032
  • Lu, X. F., & Hay, J. N. (2001). Crystallization orientation and relaxation in uniaxially drawn poly (ethylene terephthalate). Polymer, 42(19), 8055–8067. https://doi.org/10.1016/S0032-3861(01)00295-6
  • Lu, Y., Wang, Y., Chen, R., & Men, Y. (2017). Crystallization and melting of isotactic polypropylene crystallized from quiescent melt and stress-induced localized melt. Journal of Polymer Science Part B: Polymer Physics, 55(12), 957–963. https://doi.org/10.1002/polb.24345
  • Luo, W., Wang, J., Guo, Y., & Hu, W. (2021). Role of stress relaxation in stress-induced polymer crystallization. Polymer, 235, 124306. https://doi.org/10.1016/j.polymer.2021.124306
  • Ma, J., Yu, L., Chen, S., Chen, W., Wang, Y., Guang, S., Zhang, X., Lu, W., Wang, Y., & Bao, J. (2019). Structure–property evolution of poly (ethylene terephthalate) fibers in industrialized process under complex coupling of stress and temperature field. Macromolecules, 52(2), 565–574. https://doi.org/10.1021/acs.macromol.8b01561
  • Mahendrasingam, A., Martin, C., Fuller, W., Blundell, D. J., Oldman, R. J., Harvie, J. L., MacKerron, D. H., Riekel, C., & Engström, P. (1999). Effect of draw ratio and temperature on the strain-induced crystallization of poly (ethylene terephthalate) at fast draw rates. Polymer, 40(20), 5553–5565. https://doi.org/10.1016/S0032-3861(98)00770-8
  • Mahendrasingam, A., Martin, C., Fuller, W., Blundell, D. J., Oldman, R. J., MacKerron, D. H., Harvie, J. L., & Riekel, C. (2000). Observation of a transient structure prior to strain-induced crystallization in poly (ethylene terephthalate). Polymer, 41(3), 1217–1221. https://doi.org/10.1016/S0032-3861(99)00461-9
  • Matthews, R. G., Ajji, A., Dumoulin, M. M., & Prud’Homme, R. E. (2000). The effects of stress relaxation on the structure and orientation of tensile drawn poly (ethylene terephthalate). Polymer, 41(19), 7139–7145. https://doi.org/10.1016/S0032-3861(00)00052-5
  • Mayhan, K. G., James, W. J., & Bosch, W. (1965). Poly (ethylene terephthalate). I. Study of crystallization kinetics. Journal of Applied Polymer Science, 9(11), 3605–3616. https://doi.org/10.1002/app.1965.070091110
  • Napolitano, M. J., & Moet, A. (1986). The effect of processing conditions on structure evolution in melt spun poly (ethylene terephthalate) fibers. Journal of Applied Polymer Science, 32(5), 4989–5006. https://doi.org/10.1002/app.1986.070320521
  • Napolitano, M. J., & Moet, A. (1987). Mechanism of cold drawing in melt‐spun poly (ethylene terephthalate) fibers. Journal of Applied Polymer Science, 34(3), 1285–1300. https://doi.org/10.1002/app.1987.070340333
  • Okada, K., Higashioji, T., Nakagawa, T., Uchida, H., Takahashi, K., Inoue, R., Nishida, K., & Kanaya, T. (2013). Structural analysis of poly (ethylene terephthalate) during uniaxial drawing above the glass transition temperature. Polymer Journal, 45(1), 50–56. https://doi.org/10.1038/pj.2012.197
  • Pace, A. U. S. Patent (1949). 2578899, October 22.
  • Peszkin, P. N., Schultz, J. M., & Lin, J. S. (1986). Kinetics of fiber heat treatment. II. Poly (ethylene terephthalate) fibers. Journal of Polymer Science Part B: Polymer Physics, 24(12), 2591–2616. https://doi.org/10.1002/polb.1986.090241201
  • Qian, R., Shen, J., & Zhu, L. (1981). Crystallization and chain orientation in hot drawn amorphous poly (ethylene terephthalate) films. Die Makromolekulare Chemie, Rapid Communications, 2(8), 499–505. https://doi.org/10.1002/marc.1981.030020805
  • Radhakrishnan, J., & Gupta, V. B. (1993). Characterization of the network in nonbirefringent flow-drawn poly (ethylene terephthalate) films. Journal of Macromolecular Science, Part B: Physics, 32(2), 243–259. https://doi.org/10.1080/00222349308215483
  • Reinsch, V. E., & Rebenfeld, L. (1994). Crystallization processes in poly (ethylene terephthalate) as modified by polymer additives and fiber reinforcement. Journal of Applied Polymer Science, 52(5), 649–662. https://doi.org/10.1002/app.1994.070520508
  • Roberts, R. C. (1969). Poly (ethylene terephthalate) I – Heat of fusion. Polymer, 10, 113–116. https://doi.org/10.1016/0032-3861(69)90014-7
  • Salem, D. R. (1992a). Crystallization kinetics during hot-drawing of poly (ethylene terephthalate) film: Strain-rate/draw-time superposition. Polymer, 33(15), 3189–3192. https://doi.org/10.1016/0032-3861(92)90233-M
  • Salem, D. R. (1992b). Development of crystalline order during hot-drawing of poly (ethylene terephthalate) film: Influence of strain rate. Polymer, 33(15), 3182–3188. https://doi.org/10.1016/0032-3861(92)90232-L
  • Salem, D. R. (1994). Crystallization during hot-drawing of poly (ethylene terephthalate) film: Influence of temperature on strain-rate/draw-time superposition. Polymer, 35(4), 771–776. https://doi.org/10.1016/0032-3861(94)90875-3
  • Salem, D. R. (1995). Crystallization during hot-drawing of poly (ethylene terephthalate) film: Influence of the deformation mode. Polymer, 36(18), 3605–3608. https://doi.org/10.1016/0032-3861(95)92036-E
  • Salem, D. R. (1999). Orientation and crystallization in poly (ethylene terephthalate) during drawing at high temperatures and strain rates. Polymer Engineering & Science, 39(12), 2419–2430. https://doi.org/10.1002/pen.11630
  • Sasano, H., & Kawai, T. (1983). On the mechanism of the flow process of poly (ethylene terephthalate). Die Makromolekulare Chemie, 184(1), 217–223. https://doi.org/10.1002/macp.1983.021840121
  • Schrauwen, B. A., Janssen, R. P., Govaert, L. E., & Meijer, H. E. (2004). Intrinsic deformation behavior of semicrystalline polymers. Macromolecules, 37(16), 6069–6078. https://doi.org/10.1021/ma035279t
  • Spruiell, J. E., McCord, D. E., & Beuerlein, R. A. (1972). The effect of strain history on the crystallization behavior of bulk poly (ethylene terephthalate). Transactions of the Society of Rheology, 16(3), 535–555. https://doi.org/10.1122/1.549281
  • Starkweather, H. W., Jr, Zoller, P., & Jones, G. A. (1983). The heat of fusion of poly (ethylene terephthalate). Journal of Polymer Science: Polymer Physics Edition, 21(2), 295–299. https://doi.org/10.1002/pol.1983.180210211
  • Swallowe, G. M., & Fernandez, J. O. (2000). Crystallisation effects during high rate deformation of polymers. Le Journal de Physique IV, 10(PR9), Pr9-311–Pr9-316. https://doi.org/10.1051/jp4:2000952
  • Swallowe, G. M., Fernandez, J. O., & Hamdan, S. (1997). Crystallinity increases in semi crystalline polymers during high rate testing. Le Journal de Physique IV, 07(C3), C3-453–C3-458. https://doi.org/10.1051/jp4:1997378
  • Thompson, A. B. (1959). Strain‐induced crystallization in polyethylene terephthalate. Journal of Polymer Science, 34(127), 741–760. https://doi.org/10.1002/pol.1959.1203412749
  • Tomisawa, R., Ikaga, T., Kim, K. H., Ohkoshi, Y., Okada, K., Masunaga, H., Kanaya, T., Masuda, M., & Maeda, Y. (2017). Effect of melt spinning conditions on the fiber structure development of polyethylene terephthalate. Polymer, 116, 367–377. https://doi.org/10.1016/j.polymer.2016.12.077
  • Wang, R., Hao, K., Wang, H., Wang, C., Chen, L., & Xie, R. (2022). Non-isothermal viscoelastic melt spinning with stress-induced crystallization: Numerical simulation and parametric analysis. International Polymer Processing, 37(1), 25–37. https://doi.org/10.1515/ipp-2021-4033
  • Wang, Y., & Aneja, A. P. (2010). A theoretical model of concurrent longitudinal and circumferential superdrawing of hollow polyethylene terephthalate fibers. Polymer Engineering & Science, 50(9), 1773–1779. https://doi.org/10.1002/pen.21711
  • Wellen, R. M. R., & Rabello, M. S. (2005). The kinetics of isothermal cold crystallization and tensile properties of poly (ethylene terephthalate). Journal of Materials Science, 40(23), 6099–6104. https://doi.org/10.1007/s10853-005-3173-3
  • Wellen, R. M., Canedo, E., & Rabello, M. S. (2011). Nonisothermal cold crystallization of poly (ethylene terephthalate). Journal of Materials Research, 26(9), 1107–1115. https://doi.org/10.1557/jmr.2011.44
  • WŁochowicz, A., Rabiej, S., & Janicki, J. (1983). Determination of the birefringence of an ideal polyester fiber (PET) with regard to the intermolecular interactions. Journal of Applied Polymer Science, 28(4), 1335–1346. https://doi.org/10.1002/app.1983.070280408
  • Wunderlich, B. (1990). ATHAS table of thermal properties of linear macromolecules. In Thermal analysis (pp. 417–431). Academic Press Limited.
  • Yakovlev, S., Fiscus, D., Brant, P., Butler, J., Bucknall, D. G., & Downing, K. H. (2019). Mechanism of stress induced crystallization of polyethylene. Polymer, 175, 25–31. https://doi.org/10.1016/j.polymer.2019.04.054
  • Zhang, W., Yan, Q., Ye, K., Zhang, Q., Chen, W., Meng, L., Chen, X., Wang, D., & Li, L. (2019). The effect of water absorption on stretch-induced crystallization of poly (ethylene terephthalate): An in-situ synchrotron radiation wide angle X-ray scattering study. Polymer, 162, 91–99. https://doi.org/10.1016/j.polymer.2018.12.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.