714
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Formulation of conductive inks printable on textiles for electronic applications: a review

, , , , &
Pages 103-200 | Received 21 Apr 2022, Accepted 07 Jun 2022, Published online: 30 Sep 2022

References

  • Abbas, A., & Bajwa, I. (2017). Inkjet printing of Ag nanoparticles using Dimatix Inkjet Printer, No 1. Protocols and Reports, Paper 37.
  • Abbasi, E., Milani, M., Fekri Aval, S., Kouhi, M., Akbarzadeh, A., Tayefi Nasrabadi, H., … Samiei, M. (2016). Silver nanoparticles: Synthesis methods, bio-applications and properties. Critical Reviews in Microbiology, 42(2), 173–180. https://doi.org/10.3109/1040841X.2014.912200
  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. https://doi.org/10.1016/j.ejpe.2018.07.003
  • Abdolmaleki, H., Kidmose, P., & Agarwala, S. (2021). Droplet-based techniques for printing of functional inks for flexible physical sensors. Advanced Materials, 33(20), 2006792. https://doi.org/10.1002/adma.202006792
  • Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., … Maqbool, M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300, 102597. https://doi.org/10.1016/j.cis.2021.102597
  • Achagri, G., Essamlali, Y., Amadine, O., Majdoub, M., Chakir, A., & Zahouily, M. (2020). Surface modification of highly hydrophobic polyester fabric coated with octadecylamine-functionalized graphene nanosheets. RSC Advances, 10(42), 24941–24950. https://doi.org/10.1039/D0RA02655G
  • Acherar, O., Truong, M. Q., Robert, S., Crispino, F., Moret, S., & Bécue, A. (2019). Paper characteristics and their influence on the ability of single metal deposition to detect fingermarks. Forensic Chemistry, 12, 8–24. https://doi.org/10.1016/j.forc.2018.11.005
  • Acumen Research and Consulting. (2021). E-textiles & smart clothing market surpass $15,018.9 Mn by 2028 | CAGR 32.3% says Acumen Research and Consulting. GlobeNewswire News Room, 12. Retrieved from https://www.globenewswire.com/news-release/2021/12/09/2349113/0/en/E-Textiles-Smart-Clothing-Market-Surpass-15-018-9-Mn-by-2028-CAGR-32-3-Says-Acumen-Research-and-Consulting.html
  • Agate, S., Joyce, M., Lucia, L., & Pal, L. (2018). Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites—A review. Carbohydrate Polymers, 198, 249–260. https://doi.org/10.1016/j.carbpol.2018.06.045
  • Ahmed, A., Sharma, S., Adak, B., Hossain, M. M., LaChance, A. M., Mukhopadhyay, S., & Sun, L. (2022). Two-dimensional MXenes: New frontier of wearable and flexible electronics. InfoMat, 4(4), e12295. https://doi.org/10.1002/inf2.12295
  • Al-Halhouli, A., Qitouqa, H., Alashqar, A., & Abu-Khalaf, J. (2018). Inkjet printing for the fabrication of flexible/stretchable wearable electronic devices and sensors. Sensor Review, 38(4), 438–452. https://doi.org/10.1108/SR-07-2017-0126
  • AL-Oqla, F. M., Sapuan, S. M., Anwer, T., Jawaid, M., & Hoque, M. E. (2015). Natural fiber reinforced conductive polymer composites as functional materials: A review. Synthetic Metals, 206, 42–54. https://doi.org/10.1016/j.syntht.2015.04.014
  • Aliabad, H. A. R., & Bashi, M. (2019). Cobalt phthalocyanine polymer for optoelectronic and thermoelectric applications. Journal of Materials Science: Materials in Electronics, 30(20), 18720–18728. https://doi.org/10.1007/s10854-019-02225-9
  • Althues, H., Henle, J., & Kaskel, S. (2007). Functional inorganic nanofillers for transparent polymers. Chemical Society Reviews, 36(9), 1454–1465. https://doi.org/10.1039/B608177K
  • Appelboom, G., Camacho, E., Abraham, M. E., Bruce, S. S., Dumont, E. L., Zacharia, B. E., … Connolly, E. S. (2014). Smart wearable body sensors for patient self-assessment and monitoring. Archives of Public Health = Archives Belges de Sante Publique, 72(1), 28. https://doi.org/10.1186/2049-3258-72-28
  • Arango, I., Bonil, L., Posada, D., & Arcila, J. (2019). Prediction of a flying droplet landing over a non-flat substrates for ink-jet applications. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(3), 967–980. https://doi.org/10.1007/s12008-019-00547-w
  • Arman Kuzubasoglu, B., & Kursun Bahadir, S. (2020). Flexible temperature sensors: A review. Sensors and Actuators A: Physical, 315, 112282. https://doi.org/10.1016/j.sna.2020.112282
  • Ashida, T., Watanabe, M., Kobayashi, K., Fujii, H., & Sanada, T. (2020). Hidden prompt splashing by corona splashing at drop impact on a smooth dry surface. Physical Review Fluids, 5, 011601(R). https://doi.org/10.1103/PhysRevFluids.5.011601
  • Balantrapu, K., & Goia, D. V. (2009). Silver nanoparticles for printable electronics and biological applications. Journal of Materials Research, 24(9), 2828–2836. https://doi.org/10.1557/jmr.2009.0336
  • Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6), 2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015
  • Baughman, R. H., Zakhidov, A. A., & De Heer, W. A. (2013). Electric field effect in atomically thin carbon films. Science, 297(5582), 787–792. https://doi.org/10.1126/science.1102896
  • Beach, C., Krachunov, S., Pope, J., Fafoutis, X., Piechocki, R. J., Craddock, I., & Casson, A. J. (2018). An ultra low power personalizable wrist worn ECG monitor integrated with IoT infrastructure. IEEE Access, 6, 44010–44021. https://doi.org/10.1109/ACCESS.2018.2864675
  • Bhattacharyya, P. K. (2007). On the capillary phenomena of jets, pp. 11.
  • Bhola, R., & Chandra, S. (1999). Parameters controlling solidification of molten wax droplets falling on a solid surface. Journal of Materials Science, 34(19), 4883–4894. https://doi.org/10.1023/A:1004680315199
  • Biswas, A., Bayer, I. S., Biris, A. S., Wang, T., Dervishi, E., & Faupel, F. (2012). Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science, 170(1–2), 2–27. https://doi.org/10.1016/j.cis.2011.11.001
  • Blazdell, P. F., & Evans, J. R. G. (2000). Application of a continuous ink jet printer to solid freeforming of ceramics. Journal of Materials Processing Technology, 99(1–3), 94–102. https://doi.org/10.1016/S0924-0136(99)00392-1
  • Bollström, R., Määttänen, A., Tobjörk, D., Ihalainen, P., Kaihovirta, N., Österbacka, R., … Toivakka, M. (2009). A multilayer coated fiber-based substrate suitable for printed functionality. Organic Electronics, 10(5), 1020–1023. https://doi.org/10.1016/j.orgel.2009.04.014
  • Boumeganane, A., Nadi, A., Cherkaoui, O., & Tahiri, M. (2022). Inkjet printing of silver conductive ink on textiles for wearable electronic applications. Materials Today: Proceedings, 58, 1235–1241. https://doi.org/10.1016/j.matpr.2022.01.469
  • Braun, A., Frank, S., Majewski, M., & Wang, X. (2015). CapSeat: Capacitive proximity sensing for automotive activity recognition. Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, New York, NY, USA, pp. 225–232. https://doi.org/10.1145/2799250.2799263
  • Brinkmann, H., Kelting, C., Makarov, S., Tsaryova, O., Schnurpfeil, G., Wöhrle, D., & Schlettwein, D. (2008). Fluorinated phthalocyanines as molecular semiconductor thin films. Physica Status Solidi (a), 205(3), 409–420. https://doi.org/10.1002/pssa.200723391
  • Brunetti, F., Operamolla, A., Castro‐Hermosa, S., Lucarelli, G., Manca, V., Farinola, G. M., & Brown, T. M. (2019). Printed solar cells and energy storage devices on paper substrates. Advanced Functional Materials, 29(21), 1806798. https://doi.org/10.1002/adfm.201806798
  • Büchner, R., Vaz da Cruz, V., Grover, N., Charisiadis, A., Fondell, M., Haverkamp, R., … Föhlisch, A. (2022). Fundamental electronic changes upon intersystem crossing in large aromatic photosensitizers: Free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin. Physical Chemistry Chemical Physics: PCCP, 24(12), 7505–7511. https://doi.org/10.1039/D1CP05420A
  • Bugakova, D., Slabov, V., Sergeeva, E., Zhukov, M., & Vinogradov, A. V. (2020). Comprehensive characterization of TiO2 inks and their application for inkjet printing of microstructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124146. https://doi.org/10.1016/j.colsurfa.2019.124146
  • Byrne, C. (2000). Technical textiles market—An overview. In Handbook of technical textiles (pp. 1-23). New York, NY: Elsevier. https://doi.org/10.1533/9781855738966.1./
  • Caglar, U. (2010). Studies of inkjet printing technology with focus on electronic materials. Tampere University of Technology, Tampere, ‎Finland. Retrieved from https://trepo.tuni.fi/handle/10024/114354
  • Cai, Y., Yao, X., Piao, X., Zhang, Z., Nie, E., & Sun, Z. (2019). Inkjet printing of particle-free silver conductive ink with low sintering temperature on flexible substrates. Chemical Physics Letters, 737, 136857. https://doi.org/10.1016/j.cplett.2019.136857
  • Can, T. T. T., Nguyen, T. C., & Choi, W.-S. (2019). Patterning of high-viscosity silver paste by an electrohydrodynamic-jet printer for use in TFT applications. Scientific Reports, 9(1), 9180. https://doi.org/10.1038/s41598-019-45504-5
  • Cao, H. (2013). Smart technology for personal protective equipment and clothing. In Smart textiles for protection (pp. 229-243). New York, NY: Elsevier. https://doi.org/10.1533/9780857097620.2.229
  • Capasso, A., Del Rio Castillo, A. E., Sun, H., Ansaldo, A., Pellegrini, V., & Bonaccorso, F. (2015). Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach. Solid State Communications, 224, 53–63. https://doi.org/10.1016/j.ssc.2015.08.011
  • Carey, T., Cacovich, S., Divitini, G., Ren, J., Mansouri, A., Kim, J. M., … Torrisi, F. (2017). Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nature Communications, 8(1), 1. oct. https://doi.org/10.1038/s41467-017-01210-2
  • Castrejon-Pita, J. R., Baxter, W. R. S., Morgan, J., Temple, S., Martin, G. D., & Hutchings, I. M. (2013). Future, opportunities and challenges of inkjet technologies. AAS, 23(6), 541–565. https://doi.org/10.1615/AtomizSpr.2013007653
  • Castrejón-Pita, J. R., Martin, G. D., Hoath, S. D., & Hutchings, I. M. (2008). A simple large-scale droplet generator for studies of inkjet printing. The Review of Scientific Instruments, 79(7), 075108. https://doi.org/10.1063/1.2957744
  • Castro, H. F., Sowade, E., Rocha, J. G., Alpuim, P., Machado, A. V., Baumann, R. R., & Lanceros-Méndez, S. (2015). Degradation of all-inkjet-printed organic thin-film transistors with TIPS-pentacene under processes applied in textile manufacturing. Organic Electronics, 22, 12–19. https://doi.org/10.1016/j.orgel.2015.03.028
  • Chang, C.-W., Cheng, T.-Y., & Liao, Y.-C. (2018). Encapsulated silver nanoparticles in water/oil emulsion for conductive inks. Journal of the Taiwan Institute of Chemical Engineers, 92, 8–14. https://doi.org/10.1016/j.jtice.2018.01.046
  • Chen, H., Pan, X., Nie, Q., Ma, Q., Fang, H., & Yin, Z. (2022). Probing the coalescence of non-Newtonian droplets on a substrate. Physics of Fluids, 34(3), 032109. https://doi.org/10.1063/5.0085765
  • Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225–229. https://doi.org/10.1016/j.carbon.2013.07.055
  • Chen, Z., Ouyang, J., Liang, W., Yan, Z., Stadler, F., & Lao, C. (2018). Development and characterizations of novel aqueous-based LSCF suspensions for inkjet printing. Ceramics International, 44(11), 13381–13388. https://doi.org/10.1016/j.ceramint.2018.04.174
  • Cheng, M., & Lou, J. (2015). A numerical study on splash of oblique drop impact on wet walls. Computers & Fluids, 115, 11–24. https://doi.org/10.1016/j.compfluid.2015.03.019
  • Cheng, T., Zhang, Y.-Z., Yi, J.-P., Yang, L., Zhang, J.-D., Lai, W.-Y., & Huang, W. (2016). Inkjet-printed flexible, transparent and aesthetic energy storage devices based on PEDOT:PSS/Ag grid electrodes. Journal of Materials Chemistry A, 4(36), 13754–13763. https://doi.org/10.1039/C6TA05319J
  • Cherenack, K., & van Pieterson, L. (2012). Smart textiles: Challenges and opportunities. Journal of Applied Physics, 112(9), 091301. nov. https://doi.org/10.1063/1.4742728
  • Chlaihawi, A. A., Narakathu, B. B., Emamian, S., Bazuin, B. J., & Atashbar, M. Z. (2018). Development of printed and flexible dry ECG electrodes. Sensing and Bio-Sensing Research, 20, 9–15. https://doi.org/10.1016/j.sbsr.2018.05.001
  • Choi, M., Kim, Y., Park, S., Ka, D., Kim, T., Lee, S., … Hong, J. (2021). Functionalized polyurethane-coated fabric with high breathability, durability, reusability, and protection ability. Advanced Functional Materials, 31(24), 2101511. https://doi.org/10.1002/adfm.202101511
  • Choi, Y., Seong, K., & Piao, Y. (2019). Metal-organic decomposition ink for printed electronics. Advanced Materials Interfaces, 6(20), 1901002. https://doi.org/10.1002/admi.201901002
  • Christie, R., & Abel, A. (2021). Organic pigments: General principles. Physical Sciences Reviews, 6(12), 807–834. https://doi.org/10.1515/psr-2020-0187
  • Cie, C. (2015). 1. Theoretical foundations for ink jet technology. In C. Cie (Ed.), Ink jet textile printing (pp. 1–13). Sawston, UK: Woodhead Publishing. https://doi.org/10.1016/B978-0-85709-230-4.00001-7
  • Correia, V., Mitra, K. Y., Castro, H., Rocha, J. G., Sowade, E., Baumann, R. R., & Lanceros-Mendez, S. (2018). Design and fabrication of multilayer inkjet-printed passive components for printed electronics circuit development. Journal of Manufacturing Processes, 31, 364–371. https://doi.org/10.1016/j.jmapro.2017.11.016
  • Coutts, M. J., Cortie, M. B., Ford, M. J., & McDonagh, A. M. (2009). Rapid and controllable sintering of gold nanoparticle inks at room temperature using a chemical agent. The Journal of Physical Chemistry C, 113(4), 1325–1328. https://doi.org/10.1021/jp808927t
  • Cruz, S. M. F., Rocha, L. A., & Viana, J. C. (2018). Printing technologies on flexible substrates for printed electronics. London, UK: IntechOpen. https://doi.org/10.5772/intechopen.76161
  • Cruz-Cruz, I., Reyes-Reyes, M., Aguilar-Frutis, M. A., Rodriguez, A. G., & López-Sandoval, R. (2010). Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films. Synthetic Metals, 160(13–14), 1501–1506. https://doi.org/10.1016/j.synthmet.2010.05.010
  • Cui, M., Song, Z., Wu, Y., Guo, B., Fan, X., & Luo, X. (2016). A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT. Biosensors & Bioelectronics, 79, 736–741. https://doi.org/10.1016/j.bios.2016.01.012
  • Dang, M. C., Dang, T. M. D., & Fribourg-Blanc, E. (2013). Inkjet printing technology and conductive inks synthesis for microfabrication techniques. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(1), 015009. https://doi.org/10.1088/2043-6262/4/1/015009
  • de Gans, B.-J., Duineveld, P. C., & Schubert, U. S. (2004). Inkjet printing of polymers: State of the art and future developments. Advanced Materials, 16(3), 203–213. https://doi.org/10.1002/adma.200300385
  • Debnath, S., Haupa, K. A., Lebedkin, S., Strelnikov, D., & Kappes, M. M. (2022). Triggering near-infrared luminescence of vanadyl phthalocyanine by charging. Angewandte Chemie, 134(25), e202201577. https://doi.org/10.1002/ange.202201577
  • Derby, B. (2010). Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Annual Review of Materials Research, 40(1), 395–414. https://doi.org/10.1146/annurev-matsci-070909-104502
  • Dhanawansha, K., Gunathilake, S., & Dassanayake, B. (2020). Silver nanowire containing wearable thermogenic smart textiles with washing stability—2020 August. Advances in Nano Research, 9, 123–131. https://doi.org/10.12989/anr.2020.9.2.123
  • Ding, J., Liu, J., Tian, Q., Wu, Z., Yao, W., Dai, Z., … Wu, W. (2016). Preparing of highly conductive patterns on flexible substrates by screen printing of silver nanoparticles with different size distribution. Nanoscale Research Letters, 11(1), 412. https://doi.org/10.1186/s11671-016-1640-1
  • Dogome, K., Enomae, T., & Isogai, A. (2013). Method for controlling surface energies of paper substrates to create paper-based printed electronics. Chemical Engineering and Processing: Process Intensification, 68, 21–25. https://doi.org/10.1016/j.cep.2013.01.003
  • Domínguez, M. A., & Sosa-Sánchez, J. L. (2020). Copper phthalocyanine buffer interlayer film incorporated in paper substrates for printed circuit boards and dielectric applications in flexible electronics. Solid-State Electronics, 172, 107898. https://doi.org/10.1016/j.sse.2020.107898
  • Dong, Y., Li, X., Liu, S., Zhu, Q., Zhang, M., Li, J.-G., & Sun, X. (2016). Optimizing formulations of silver organic decomposition ink for producing highly-conductive features on flexible substrates: The case study of amines. Thin Solid Films, 616, 635–642. https://doi.org/10.1016/j.tsf.2016.09.024
  • Duan, Y., Fu, N., Fang, Y., Li, X., Liu, Q., Zhou, X., & Lin, Y. (2013). Synthesis and formation mechanism of mesoporous TiO2 microspheres for scattering layer in dye-sensitized solar cells. Electrochimica Acta, 113, 109–116. https://doi.org/10.1016/j.electacta.2013.09.057
  • Duan, Y., You, G., Sun, K., Zhu, Z., Liao, X., Lv, L., … He, L. (2021). Advances in wearable textile-based micro energy storage devices: Structuring, application and perspective. Nanoscale Advances, 3(22), 6271–6293. https://doi.org/10.1039/D1NA00511A
  • Duineveld, P. C. (2002). Ink-jet printing of polymer light-emitting devices. Organic Light-Emitting Materials and Devices V, 4464, 59–67. https://doi.org/10.1117/12.457460
  • Dybowska-Sarapuk, L., Kielbasinski, K., Arazna, A., Futera, K., Skalski, A., Janczak, D., … Jakubowska, M. (2018). Efficient inkjet printing of graphene-based elements: Influence of dispersing agent on ink viscosity. Nanomaterials, 8(8), 602. https://doi.org/10.3390/nano8080602
  • Eda, G., & Chhowalla, M. (2010). Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials, 22(22), 2392–2415. https://doi.org/10.1002/adma.200903689
  • Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., … Reisser, J. (2014). Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913
  • Eshkeiti, A., Reddy, A. S. G., Emamian, S., Narakathu, B. B., Joyce, M., Joyce, M., … Atashbar, M. Z. (2015). Screen printing of multilayered hybrid printed circuit boards on different substrates. IEEE Transactions on Components, Packaging and Manufacturing Technology, 5(3), 415–421. https://doi.org/10.1109/TCPMT.2015.2391012
  • Fan, X., Huang, Y., Ding, X., Luo, N., Li, C., Zhao, N., & Chen, S.-C. (2018). Alignment‐free liquid‐capsule pressure sensor for cardiovascular monitoring. Advanced Functional Materials, 28(44), 1805045. https://doi.org/10.1002/adfm.201805045
  • Fiala, J., Bingger, P., Ruh, D., Foerster, K., Heilmann, C., Beyersdorf, F., … Seifert, A. (2013). An implantable optical blood pressure sensor based on pulse transit time. Biomedical Microdevices, 15(1), 73–81. https://doi.org/10.1007/s10544-012-9689-9
  • Franco, M., Alves, R., Perinka, N., Tubio, C., Costa, P., & Lanceros-Mendéz, S. (2020). Water-based graphene inks for all-printed temperature and deformation sensors. ACS Applied Electronic Materials, 2(9), 2857–2867. https://doi.org/10.1021/acsaelm.0c00508
  • Fromm, J. E. (1984). Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM Journal of Research and Development, 28(3), 322–333. https://doi.org/10.1147/rd.283.0322
  • Gakiya-Teruya, M., Palomino-Marcelo, L., & Rodriguez-Reyes, J. C. F. (2018). Synthesis of highly concentrated suspensions of silver nanoparticles by two versions of the chemical reduction method. Methods and Protocols, 2(1), 3. https://doi.org/10.3390/mps2010003
  • Gao, Y., Shi, W., Wang, W., Leng, Y., & Zhao, Y. (2014). Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Industrial & Engineering Chemistry Research, 53(43), 16777–16784. https://doi.org/10.1021/ie502675z
  • Gerd, Batz-Sohn, Christoph, Nelli, T., McIntosh, R., & Kalbitz, W. (2010). Improved dispersibility of surface oxidized carbon black pigments for inkjet ink formulation (pp. 181–184). Springfield, VA: Society for Imaging Science and Technology.
  • Ghosale, A., Shankar, R., Ganesan, V., & Shrivas, K. (2016). Direct-writing of paper based conductive track using silver nano-ink for electroanalytical application. Electrochimica Acta, 209, 511–520. https://doi.org/10.1016/j.electacta.2016.05.109
  • Girard, F., Attané, P., & Morin, V. (2006). A new analytical model for impact and spreading of one drop: Application to inkjet printing. Tappi-Journal, 12(5), 24.
  • Gizdavic-Nikolaidis, M. R., Jevremovic, M. M., Milenkovic, M., Allison, M. C., Stanisavljev, D. R., Bowmaker, G. A., & Zujovic, Z. D. (2016). High yield and facile microwave-assisted synthesis of conductive H2SO4 doped polyanilines. Materials Chemistry and Physics, 173, 255–261. https://doi.org/10.1016/j.matchemphys.2016.02.011
  • Gonçalves, C., Ferreira da Silva, A., Gomes, J., & Simoes, R. ( 2018). Wearable E-textile technologies: A review on sensors, actuators and control elements. Inventions, 3(1), 14. https://doi.org/10.3390/inventions3010014
  • Gounden, D., Nombona, N., & van Zyl, W. E. (2020). Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coordination Chemistry Reviews, 420, 213359. https://doi.org/10.1016/j.ccr.2020.213359
  • Grancarić, A. M., Jerković, I., Koncar, V., Cochrane, C., Kelly, F. M., Soulat, D., & Legrand, X. (2018). Conductive polymers for smart textile applications. Journal of Industrial Textiles, 48(3), 612–642. https://doi.org/10.1177/1528083717699368
  • Grüßer, M., Waugh, D. G., Lawrence, J., Langer, N., & Scholz, D. (2019). On the droplet size and application of wettability analysis for the development of ink and printing substrates. Langmuir, 35(38), 12356–12365. https://doi.org/10.1021/acs.langmuir.9b01674
  • Guardia, L., Fernández-Merino, M. J., Paredes, J. I., Solís-Fernández, P., Villar-Rodil, S., Martínez-Alonso, A., & Tascón, J. M. D. (2011). High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon, 49(5), 1653–1662. https://doi.org/10.1016/j.carbon.2010.12.049
  • Guerrero-Contreras, J., & Caballero-Briones, F. (2015). Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Materials Chemistry and Physics, 153, 209–220. https://doi.org/10.1016/j.matchemphys.2015.01.005
  • Guo, H. L., & Zhao, X. P. (2004). Preparation of a kind of red encapsulated electrophoretic ink. Optical Materials, 26(3), 297–300. https://doi.org/10.1016/j.optmat.2004.01.010
  • Guo, W., Tan, C., Shi, K., Li, J., Wang, X.-X., Sun, B., … Jiang, P. (2018). Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale, 10(37), 17751–17760. https://doi.org/10.1039/C8NR05292A
  • Gürses, A., Açıkyıldız, M., Güneş, K., & Gürses, M. S. (2016). Classification of dye and pigments. In A. Gürses, M. Açıkyıldız, K. Güneş, & M. S. Gürses (Eds.), Dyes and pigments (pp. 31–45). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-33892-7_3
  • Ha, M., Park, J., Lee, Y., & Ko, H. (2015). Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano, 9(4), 3421–3427. https://doi.org/10.1021/acsnano.5b01478
  • Hatamie, A., Angizi, S., Kumar, S., Pandey, C. M., Simchi, A., Willander, M., & Malhotra, B. D. (2020). Review—Textile based chemical and physical sensors for healthcare monitoring. Journal of the Electrochemical Society, 167(3), 037546. https://doi.org/10.1149/1945-7111/ab6827
  • He, B., Yang, S., Qin, Z., Wen, B., & Zhang, C. (2017). The roles of wettability and surface tension in droplet formation during inkjet printing. Scientific Reports, 7(1), 11841. https://doi.org/10.1038/s41598-017-12189-7
  • He, Z., Wang, L., Liu, G.-S., Xu, Y., Qiu, Z., Zhong, M., … Yang, B.-R. (2020). Constructing electrophoretic displays on foldable paper-based electrodes by a facile transferring method. ACS Applied Electronic Materials, 2(5), 1335–1342. https://doi.org/10.1021/acsaelm.0c00129
  • Heinzl, J., & Hertz, C. H. (1985). Ink-jet printing. In P. W. Hawkes (Ed.), Advances in electronics and electron physics (Vol. 65, pp. 91-171). Cambridge, MA: Academic Press. https://doi.org/10.1016/S0065-2539(08)60877-X
  • Hensher, M., Canny, B., Zimitat, C., Campbell, J., & Palmer, A. (2020). Health care, overconsumption and uneconomic growth: A conceptual framework. Social Science & Medicine (1982), 266, 113420. https://doi.org/10.1016/j.socscimed.2020.113420
  • Herlem, G., Picaud, F., Girardet, C., & Micheau, O. (2019). Chapter 16. Carbon nanotubes: Synthesis, characterization, and applications in drug-delivery systems. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra, & S. Thomas (Eds.), Nanocarriers for drug delivery (pp. 469–529). New York, NY: Elsevier. https://doi.org/10.1016/B978-0-12-814033-8.00016-3
  • Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., … Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9), 563–568. https://doi.org/10.1038/nnano.2008.215
  • Hoeng, F., Bras, J., Gicquel, E., Krosnicki, G., & Denneulin, A. (2017). Inkjet printing of nanocellulose–silver ink onto nanocellulose coated cardboard. RSC Advances, 7(25), 15372–15381. https://doi.org/10.1039/C6RA23667G
  • Hösel, M., Søndergaard, R. R., Angmo, D., & Krebs, F. C. (2013). Comparison of fast roll-to-roll flexographic, inkjet, flatbed, and rotary screen printing of metal back electrodes for polymer solar cells. Advanced Engineering Materials, 15(10), 995–1001. https://doi.org/10.1002/adem.201300011
  • Hou, X.-Y., Bian, S.-G., Chen, J.-F., & Le, Y. (2012). High charged red pigment nanoparticles for electrophoretic displays. Optical Materials, 35(2), 201–204. https://doi.org/10.1016/j.optmat.2012.07.030
  • Htwe, Y. Z. N., & Mariatti, M. (2021). Surfactant-assisted water-based graphene conductive inks for flexible electronic applications. Journal of the Taiwan Institute of Chemical Engineers, 125, 402–412. https://doi.org/10.1016/j.jtice.2021.06.022
  • Htwe, Y. Z. N., & Mariatti, M. (2022). Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges. Journal of Science: Advanced Materials and Devices, 7(2), 100435. https://doi.org/10.1016/j.jsamd.2022.100435
  • Htwe, Y. Z. N., Abdullah, M. K., & Mariatti, M. (2021). Optimization of graphene conductive ink using solvent exchange techniques for flexible electronics applications. Synthetic Metals, 274, 116719. https://doi.org/10.1016/j.synthmet.2021.116719
  • Htwe, Y. Z. N., Chow, W. S., Suriati, G., Thant, A. A., & Mariatti, M. (2019). Properties enhancement of graphene and chemical reduction silver nanoparticles conductive inks printed on polyvinyl alcohol (PVA) substrate. Synthetic Metals, 256, 116120. https://doi.org/10.1016/j.synthmet.2019.116120
  • Htwe, Y. Z. N., Hidayah, IN., & Mariatti, M. (2020). Performance of inkjet-printed strain sensor based on graphene/silver nanoparticles hybrid conductive inks on polyvinyl alcohol substrate. Journal of Materials Science: Materials in Electronics, 31(18), 15361–15371. https://doi.org/10.1007/s10854-020-04100-4
  • Hu, H., Buddingh, J. V., Wang, Z., Becher-Nienhaus, B., & Liu, G. (2018). Patterning electrospun nanofiber mats for screen printing and other applications. Journal of Materials Chemistry C, 6(4), 808–813. https://doi.org/10.1039/C7TC05197B
  • Hu, X., Huang, T., Liu, Z., Wang, G., Chen, D., Guo, Q., … Ding, G. (2020). Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors. Journal of Materials Chemistry A, 8(29), 14778–14787. https://doi.org/10.1039/D0TA04915H
  • Hu, X., Tian, M., Xu, T., Sun, X., Sun, B., Sun, C., … Qu, L. (2020). Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano, 14(1), 559–567. https://doi.org/10.1021/acsnano.9b06899
  • Huang, Q., & Zhu, Y. (2019). Printing conductive nanomaterials for flexible and stretchable electronics: A review of materials, processes, and applications. Advanced Materials Technologies, 4(5), 1800546. https://doi.org/10.1002/admt.201800546
  • Huang, X., Leng, T., Chang, K. H., Chen, J. C., Novoselov, K. S., & Hu, Z. (2016). Graphene radio frequency and microwave passive components for low cost wearable electronics. 2D Materials, 3(2), 025021. https://doi.org/10.1088/2053-1583/3/2/025021
  • Huang, X., Leng, T., Zhu, M., Zhang, X., Chen, J., Chang, K., … Hu, Z. (2015). Highly flexible and conductive printed graphene for wireless wearable communications applications. Scientific Reports, 5(1), 18298. https://doi.org/10.1038/srep18298
  • Hung, S.-C., Lai, J.-Y., & Liu, J. S. (2022). Mapping technological trajectories as the main paths of knowledge flow: Evidence from printers. Industrial and Corporate Change, 31(3), 863–889. https://doi.org/10.1093/icc/dtab072
  • Ibanez-Labiano, I., Ergoktas, M. S., Kocabas, C., Toomey, A., Alomainy, A., & Ozden-Yenigun, E. (2020). Graphene-based soft wearable antennas. Applied Materials Today, 20, 100727. https://doi.org/10.1016/j.apmt.2020.100727
  • Ibrahim, N., Akindoyo, J. O., & Mariatti, M. (2022). Recent development in silver-based ink for flexible electronics. Journal of Science: Advanced Materials and Devices, 7(1), 100395. https://doi.org/10.1016/j.jsamd.2021.09.002
  • Islam, M. R., Afroj, S., Beach, C., Islam, M. H., Parraman, C., Abdelkader, A., … Karim, N. (2022). Fully printed and multifunctional graphene-based wearable e-textiles for personalized healthcare applications. iScience, 25(3), 103945. https://doi.org/10.1016/j.isci.2022.103945
  • Islam, R., Khair, N., Ahmed, D. M., & Shahariar, H. (2019). Fabrication of low cost and scalable carbon-based conductive ink for E-textile applications. Materials Today Communications, 19, 32–38. https://doi.org/10.1016/j.mtcomm.2018.12.009
  • Ivanov, A. (2019). Implementation of flexible displays for smart textiles using processes of printed electronics. 2019 IMAPS Nordic Conference on Microelectronics Packaging (NordPac), pp. 206–213. https://doi.org/10.23919/NORDPAC.2019.8760351
  • Jaafar, E., Kashif, M., Sahari, S. K., & Ngaini, Z. (2018). Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO). Materials Science Forum, 917, 112–116. https://doi.org/10.4028/www.scientific.net/MSF.917.112
  • Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174
  • Jang, D., Kim, D., & Moon, J. (2009). Influence of fluid physical properties on ink-jet printability. Langmuir, 25(5), 2629–2635. https://doi.org/10.1021/la900059m
  • Janietz, S., Gruber, B., Schattauer, S., & Schulze, K. (2012). Integration of OLEDs in textiles. Advances in Science and Technology, 80, 14–21. https://doi.org/10.4028/www.scientific.net/AST.80.14
  • Jeong, H. J., Jang, H., Kim, T., Earmme, T., & Kim, F. S. (2021). Sigmoidal dependence of electrical conductivity of thin PEDOT:PSS films on concentration of linear glycols as a processing additive. Materials, 14(8), 1975. https://doi.org/10.3390/ma14081975
  • Jiang, X., Bai, Y., Chen, X., & Liu, W. (2020). A review on raw materials, commercial production and properties of lyocell fiber. Journal of Bioresources and Bioproducts, 5(1), 16–25. https://doi.org/10.1016/j.jobab.2020.03.002
  • Jo, Y. H., Jung, I., Choi, C. S., Kim, I., & Lee, H. M. (2011). Synthesis and characterization of low temperature Sn nanoparticles for the fabrication of highly conductive ink. Nanotechnology, 22(22), 225701. https://doi.org/10.1088/0957-4484/22/22/225701
  • Jönsson, S. K. M., Birgerson, J., Crispin, X., Greczynski, G., Osikowicz, W., Denier van der Gon, A. W., … Fahlman, M. (2003). The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synthetic Metals, 139(1), 1–10. https://doi.org/10.1016/S0379-6779(02)01259-6
  • Jose, S., Joshy, D., Narendranath, S. B., & Periyat, P. (2019). Recent advances in infrared reflective inorganic pigments. Solar Energy Materials and Solar Cells, 194, 7–27. https://doi.org/10.1016/j.solmat.2019.01.037
  • Joshi, M., & Adak, B. (2019). Chapter: 5.10. Advances in nanotechnology based functional, smart and intelligent textiles: A review. In Comprehensive nanoscience and nanotechnology (2nd ed., pp. 253–290). New York, NY: Elsevier.
  • Joshi, M., & Bhattacharyya, A. (2011). Nanotechnology—A new route to high-performance functional textiles. Textile Progress, 43(3), 155–233. https://doi.org/10.1080/00405167.2011.570027
  • Jourand, P., De Clercq, H., Corthout, R., & Puers, R. (2009). Textile integrated breathing and ECG monitoring system. Procedia Chemistry, 1(1), 722–725. https://doi.org/10.1016/j.proche.2009.07.180
  • Jovanov, E., Lords, A. O., Raskovic, D., Cox, P. G., Adhami, R., & Andrasik, F. (2003). Stress monitoring using a distributed wireless intelligent sensor system. IEEE Engineering in Medicine and Biology Magazine: The Quarterly Magazine of the Engineering in Medicine & Biology Society, 22(3), 49–55. https://doi.org/10.1109/MEMB.2003.1213626
  • Ju, B., Kim, I., Li, B. M., Knowles, C. G., Mills, A., Grace, L., & Jur, J. S. (2021). Inkjet printed textile force sensitive resistors for wearable and healthcare devices. Advanced Healthcare Materials, 10(20), 2100893. https://doi.org/10.1002/adhm.202100893
  • Jul, L. (2007). Adding values, upholstery concepts for automotives using smart textiles. University of Borås/Swedish School of Textiles, Borås, Sweden. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-18540
  • Jun, H.-Y., Kim, S.-J., & Choi, C.-H. (2021). Ink formulation and printing parameters for inkjet printing of two dimensional materials: A mini review. Nanomaterials, 11(12), 3441. https://doi.org/10.3390/nano11123441
  • Jung, Y. H., Chang, T.-H., Zhang, H., Yao, C., Zheng, Q., Yang, V. W., … Ma, Z. (2015). High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Communications, 6(1), 7170. https://doi.org/10.1038/ncomms8170
  • Kahya, S. S. (2012). Synthesis and characterization of fluorescent zinc phthalocyanine pigments and its combination pigment with mica titania pigment. Retrieved from https://open.metu.edu.tr/handle/11511/21937
  • Kamyshny, A., Ben-Moshe, M., Aviezer, S., & Magdassi, S. (2005). Ink-jet printing of metallic nanoparticles and microemulsions. Macromolecular Rapid Communications, 26(4), 281–288. https://doi.org/10.1002/marc.200400522
  • Kang, D., Pikhitsa, P. V., Choi, Y. W., Lee, C., Shin, S. S., Piao, L., … Choi, M. (2014). Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature, 516(7530), 222–226. https://doi.org/10.1038/nature14002
  • Kang, H., Kim, S., Shin, J., & Ko, S. (2022). Inkjet-printed flexible strain-gauge sensor on polymer substrate: Topographical analysis of sensitivity. Applied Sciences, 12(6), 3193. https://doi.org/10.3390/app12063193
  • Kant, T., Shrivas, K., Ganesan, V., Mahipal, Y. K., Devi, R., Deb, M. K., & Shankar, R. (2020). Flexible printed paper electrode with silver nano-ink for electrochemical applications. Microchemical Journal, 155, 104687. https://doi.org/10.1016/j.microc.2020.104687
  • Kao, H., Chuang, C.-H., Chang, L.-C., Cho, C.-L., & Chiu, H.-C. (2019). Inkjet-printed silver films on textiles for wearable electronics applications. Surface and Coatings Technology, 362, 328–332. https://doi.org/10.1016/j.surfcoat.2019.01.076
  • Karim, N., Afroj, S., Tan, S., Novoselov, K. S., & Yeates, S. G. (2019). All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications. Scientific Reports, 9(1), 8035. https://doi.org/10.1038/s41598-019-44420-y
  • Kato, M., Sano, H., Kiyobayashi, T., Takeichi, N., & Yao, M. (2020). Improvement of the battery performance of indigo, an organic electrode material, using PEDOT/PSS with d-sorbitol. ACS Omega, 5(30), 18565–18572. https://doi.org/10.1021/acsomega.0c00313
  • Kaushik, V., Lee, J., Hong, J., Lee, S., Lee, S., Seo, J., … Lee, T. (2015). Textile-based electronic components for energy applications: Principles, problems, and perspective. Nanomaterials (Basel, Switzerland), 5(3), 1493–1531. https://doi.org/10.3390/nano5031493
  • Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H., & Friend, R. H. (2003). Inkjet printing of polymer thin film transistors. Thin Solid Films, 438–439, 279–287. https://doi.org/10.1016/S0040-6090(03)00801-0
  • Ketenoğlu, D., & Ünal, B. (2013). Influence of surface roughness on the electrical conductivity of semiconducting thin films. Physica A: Statistical Mechanics and Its Applications, 392(14), 3008–3017. https://doi.org/10.1016/j.physa.2013.03.007
  • Kettle, J., Lamminmäki, T., & Gane, P. (2010). A review of modified surfaces for high speed inkjet coating. Surface and Coatings Technology, 204(12–13), 2103–2109. https://doi.org/10.1016/j.surfcoat.2009.10.035
  • Khan, Z., Al-Thabaiti, S. A., Obaid, A. Y., & Al-Youbi, A. O. (2011). Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids and Surfaces. B, Biointerfaces, 82(2), 513–517. https://doi.org/10.1016/j.colsurfb.2010.10.008
  • Khau, B. V., Scholz, A. D., & Reichmanis, E. (2020). Advances and opportunities in development of deformable organic electrochemical transistors. Journal of Materials Chemistry C, 8(43), 15067–15078. https://doi.org/10.1039/D0TC03118F
  • Kholghi Eshkalak, S., Khatibzadeh, M., Kowsari, E., Chinnappan, A., & Ramakrishna, S. (2018). A novel surface modification of copper (II) phthalocyanine with ionic liquids as electronic ink. Dyes and Pigments, 154, 296–302. https://doi.org/10.1016/j.dyepig.2018.01.030
  • Khoshmanesh, F., Thurgood, P., Pirogova, E., Nahavandi, S., & Baratchi, S. (2021). Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosensors & Bioelectronics, 176, 112946. https://doi.org/10.1016/j.bios.2020.112946
  • Kim, H., & Lee, S. (2018). Characteristics of electrical heating elements coated with graphene nanocomposite on polyester fabric: Effect of different graphene contents and annealing temperatures. Fibers and Polymers, 19(5), 965–976. https://doi.org/10.1007/s12221-018-7825-8
  • Kim, S., Yun, T. G., Kang, C., Son, M.-J., Kang, J.-G., Kim, I.-H., … Hwang, B. (2018). Facile fabrication of paper-based silver nanostructure electrodes for flexible printed energy storage system. Materials & Design, 151, 1–7. https://doi.org/10.1016/j.matdes.2018.04.047
  • Kim, S.-W., Kwon, S.-N., & Na, S.-I. (2019). Stretchable and electrically conductive polyurethane-silver/graphene composite fibers prepared by wet-spinning process. Composites Part B: Engineering, 167, 573–581. https://doi.org/10.1016/j.compositesb.2019.03.035
  • Kim, Y. K., Park, J. A., Yoon, W. H., Kim, J., & Jung, S. (2016). Drop-on-demand inkjet-based cell printing with 30-μm nozzle diameter for cell-level accuracy. Biomicrofluidics, 10(6), 064110. https://doi.org/10.1063/1.4968845
  • Koenig, A., & Weyermann, C. (2017). La datation des encres: Revue des méthodes basées sur l’analyse des solvants. Revue Internationale de Criminologie et de Police Technique et Scientifique, 70(3), 336–375.
  • Komolafe, A., Zaghari, B., Torah, R., Weddell, A. S., Khanbareh, H., Tsikriteas, Z. M., … Beeby, S. (2021). E-textile technology review—From materials to application. IEEE Access, 9, 97152–97179. https://doi.org/10.1109/ACCESS.2021.3094303
  • Krykpayev, B., Farooqui, M. F., Bilal, R. M., Vaseem, M., & Shamim, A. (2017). A wearable tracking device inkjet-printed on textile. Microelectronics Journal, 65, 40–48. https://doi.org/10.1016/j.mejo.2017.05.010
  • Kumar, S., Kaur, N., Sharma, A. K., Mahajan, A., & Bedi, R. K. (2017). Improved Cl 2 sensing characteristics of reduced graphene oxide when decorated with copper phthalocyanine nanoflowers. RSC Advances, 7(41), 25229–25236. https://doi.org/10.1039/C7RA02212C
  • Kwon, J., Cho, H., Eom, H., Lee, H., Suh, Y. D., Moon, H., … Ko, S. H. (2016). Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications. ACS Applied Materials & Interfaces, 8(18), 11575–11582. https://doi.org/10.1021/acsami.5b12714
  • La, T.-G., Qiu, S., Scott, D. K., Bakhtiari, R., Kuziek, J. W. P., Mathewson, K. E., … Chung, H.-J. (2018). Two-layered and stretchable e-textile patches for wearable healthcare electronics. Advanced Healthcare Materials, 7(22), 1801033. https://doi.org/10.1002/adhm.201801033
  • Lakafosis, V., Rida, A., Vyas, R., Yang, L., Nikolaou, S., & Tentzeris, M. M. (2010). Progress towards the first wireless sensor networks consisting of inkjet-printed, paper-based RFID-enabled sensor tags. Proceedings of the IEEE, 98(9), 1601–1609. https://doi.org/10.1109/JPROC.2010.2049622
  • Lamminmäki, T. T., Kettle, J. P., Puukko, P. J. T., Ridgway, C. J., & Gane, P. A. C. (2012). Short timescale inkjet ink component diffusion: An active part of the absorption mechanism into inkjet coatings. Journal of Colloid and Interface Science, 365(1), 222–235. https://doi.org/10.1016/j.jcis.2011.08.045
  • Lan, L., Zhao, F., Yao, Y., Ping, J., & Ying, Y. (2020). One-step and spontaneous in situ growth of popcorn-like nanostructures on stretchable double-twisted fiber for ultrasensitive textile pressure sensor. ACS Applied Materials & Interfaces, 12(9), 10689–10696. https://doi.org/10.1021/acsami.0c00079
  • LaPorte, G. M., Wilson, J. D., Cantu, A. A., Mancke, S. A., & Fortunato, S. L. (2004). The identification of 2-phenoxyethanol in ballpoint inks using gas chromatography/mass spectrometry—Relevance to ink dating. Journal of Forensic Sciences, 49(1), 1–5. https://doi.org/10.1520/JFS2003217
  • Lee, H.-H., Chou, K.-S., & Huang, K.-C. (2005). Inkjet printing of nanosized silver colloids. Nanotechnology, 16(10), 2436–2441. https://doi.org/10.1088/0957-4484/16/10/074
  • Lee, J. B., & Subramanian, V. (2003). Organic transistors on fiber: A first step towards electronic textiles. IEEE International Electron Devices Meeting 2003, pp. 8.3.1–8.3.4. https://doi.org/10.1109/IEDM.2003.1269241
  • Lee, M.-W., Lee, M.-Y., Choi, J.-C., Park, J.-S., & Song, C.-K. (2010). Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs. Organic Electronics, 11(5), 854–859. https://doi.org/10.1016/j.orgel.2010.01.028
  • Leenen, M. A. M., Arning, V., Thiem, H., Steiger, J., & Anselmann, R. (2009). Printable electronics: Flexibility for the future. Physica Status Solidi (a), 206(4), 588–597. https://doi.org/10.1002/pssa.200824428
  • Li, B., Santhanam, S., Schultz, L., Jeffries-EL, M., Iovu, M. C., Sauvé, G., … Lambeth, D. N. (2007). Inkjet printed chemical sensor array based on polythiophene conductive polymers. Sensors and Actuators B: Chemical, 123(2), 651–660. https://doi.org/10.1016/j.snb.2006.09.064
  • Li, D., Le, Y., Hou, X.-Y., Chen, J.-F., & Shen, Z.-G. (2011). Colored nanoparticles dispersions as electronic inks for electrophoretic display. Synthetic Metals, 161(13–14), 1270–1275. https://doi.org/10.1016/j.synthmet.2011.04.022
  • Li, G.-X., Qin, S.-C., Feng, Y.-Q., Fang, S., & Meng, S.-X. (2016). Preparation and characterization of microcapsule-encapsulated colored electrophoretic fluid in trifluorotoluene system for electrophoretic display. Journal of Display Technology, 12(10), 1145–1151. https://doi.org/10.1109/JDT.2016.2560519
  • Li, H., Liu, J., Li, K., & Liu, Y. (2019). Piezoelectric micro-jet devices: A review. Sensors and Actuators A: Physical, 297, 111552. https://doi.org/10.1016/j.sna.2019.111552
  • Li, J., Sollami Delekta, S., Zhang, P., Yang, S., Lohe, M. R., Zhuang, X., … Östling, M. (2017). Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano, 11(8), 8249–8256. https://doi.org/10.1021/acsnano.7b03354
  • Li, J., Ye, F., Vaziri, S., Muhammed, M., Lemme, M. C., & Östling, M. (2013). Efficient inkjet printing of graphene. Advanced Materials, 25(29), 3985–3992. https://doi.org/10.1002/adma.201300361
  • Li, K., Liu, J., Chen, W., & Zhang, L. (2018). Controllable printing droplets on demand by piezoelectric inkjet: Applications and methods. Microsystem Technologies, 24(2), 879–889. https://doi.org/10.1007/s00542-017-3661-9
  • Li, L., Tang, Q., Li, H., Hu, W., Yang, X., Shuai, Z., … Zhu, D. (2008). Organic thin-film transistors of phthalocyanines. Pure and Applied Chemistry, 80(11), 2231–2240. https://doi.org/10.1351/pac200880112231
  • Li, Q., Wang, Y., Jiang, S., Li, T., Ding, X., Tao, X., & Wang, X. (2020). Investigation into tensile hysteresis of polyurethane-containing textile substrates for coated strain sensors. Materials & Design, 188, 108451. https://doi.org/10.1016/j.matdes.2019.108451
  • Li, R.-Z., Hu, A., Zhang, T., & Oakes, K. D. (2014). Direct writing on paper of foldable capacitive touch pads with silver nanowire inks. ACS Applied Materials & Interfaces, 6(23), 21721–21729. https://doi.org/10.1021/am506987w
  • Li, W., Sun, Q., Li, L., Jiu, J., Liu, X.-Y., Kanehara, M., … Suganuma, K. (2020). The rise of conductive copper inks: Challenges and perspectives. Applied Materials Today, 18, 100451. https://doi.org/10.1016/j.apmt.2019.100451
  • Li, Y., Qian, Q., Zhu, X., Li, Y., Zhang, M., Li, J., … Zhang, Q. (2020). Recent advances in organic‐based materials for resistive memory applications. InfoMat, 2(6), 995–1033. https://doi.org/10.1002/inf2.12120
  • Lilja, J., Salonen, P., Kaija, T., & de Maagt, P. (2012). Design and manufacturing of robust textile antennas for harsh environments. IEEE Transactions on Antennas and Propagation, 60(9), 4130–4140. https://doi.org/10.1109/TAP.2012.2207035
  • Liu, H., Zhang, Z., Ge, J., Lin, X., Ni, X., Yang, H., & Yang, L. (2019). A flexible conductive hybrid elastomer for high-precision stress/strain and humidity detection. Journal of Materials Science & Technology, 35(1), 176–180. https://doi.org/10.1016/j.jmst.2018.09.006
  • Liu, L., Feng, Y., & Wu, W. (2019). Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. Journal of Power Sources, 410–411, 69–77. https://doi.org/10.1016/j.jpowsour.2018.11.012
  • Liu, W., Shangguan, D., & Lee, J. C. (2020). Evaluation of launderability of electrically conductive fabrics for E-textile applications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10(5), 763–769. https://doi.org/10.1109/TCPMT.2020.2981902
  • Lo, L.-W., Zhao, J., Wan, H., Wang, Y., Chakrabartty, S., & Wang, C. (2021). An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Applied Materials & Interfaces, 13(18), 21693–21702. https://doi.org/10.1021/acsami.1c00537
  • Loffredo, F., Burrasca, G., Quercia, L., & Sala, D. D. (2007). Gas sensor devices obtained by ink-jet printing of polyaniline suspensions. Macromolecular Symposia, 247(1), 357–363. https://doi.org/10.1002/masy.200750141
  • Loffredo, F., Mauro, A. D. G. D., Burrasca, G., La Ferrara, V., Quercia, L., Massera, E., … Sala, D. D. (2009). Ink-jet printing technique in polymer/carbon black sensing device fabrication. Sensors and Actuators B: Chemical, 143(1), 421–429. https://doi.org/10.1016/j.snb.2009.09.024
  • Lok, B. K., Liang, Y. N., Ng, Y. M., & Hu, X. (2008). Characterization of inkjet printed MWCNT in colloidal and conductive polymer solution. 2008 10th Electronics Packaging Technology Conference, pp. 285–290. https://doi.org/10.1109/EPTC.2008.4763449
  • Lorenz, A., Senne, A., Rohde, J., Kroh, S., Wittenberg, M., Krüger, K., … Biro, D. (2015). Evaluation of flexographic printing technology for multi-busbar solar cells. Energy Procedia, 67, 126–137. https://doi.org/10.1016/j.egypro.2015.03.296
  • Majee, S., Song, M., Zhang, S.-L., & Zhang, Z.-B. (2016). Scalable inkjet printing of shear-exfoliated graphene transparent conductive films. Carbon, 102, 51–57. https://doi.org/10.1016/j.carbon.2016.02.013
  • Matavž, A., & Malič, B. (2018). Inkjet printing of functional oxide nanostructures from solution-based inks. Journal of Sol-Gel Science and Technology, 87(1), 1–21. https://doi.org/10.1007/s10971-018-4701-3
  • Melánová, K., Beneš, L., Zima, V., Trchová, M., & Stejskal, J. (2020). Polyaniline–zirconium phosphonate composites: Thermal stability and spectroscopic study. Journal of Physics and Chemistry of Solids, 147, 109634. https://doi.org/10.1016/j.jpcs.2020.109634
  • Melville, O. A., Lessard, B. H., & Bender, T. P. (2015). Phthalocyanine-based organic thin-film transistors: A review of recent advances. ACS Applied Materials & Interfaces, 7(24), 13105–13118. https://doi.org/10.1021/acsami.5b01718
  • Mulaku, A. (2018). Stability evaluation of magnesium complexes of phthalocyanines and azaphthalocyanines under acidic conditions. Retrieved from https://dspace.cuni.cz/handle/20.500.11956/98236
  • Muñoz, R., & Gómez-Aleixandre, C. (2013). Review of CVD synthesis of graphene. Chemical Vapor Deposition, 19(10–12), 297–322. https://doi.org/10.1002/cvde.201300051
  • Mwakikunga, B. W., & Hillie, K. T. (2011). Graphene synthesis, catalysis with transition metals and their interactions by laser photolysis. In Graphene – Synthesis, characterization, properties and applications (pp. 59–78). London, UK: IntechOpen.
  • Nadi, A., Boukhriss, A., Bentis, A., Jabrane, E., & Gmouh, S. (2018). Evolution in the surface modification of textiles: A review. Textile Progress, 50(2), 67–108. https://doi.org/10.1080/00405167.2018.1533659
  • Nair, N. M., Pakkathillam, J. K., Kumar, K., Arunachalam, K., Ray, D., & Swaminathan, P. (2020). Printable silver nanowire and PEDOT:PSS nanocomposite ink for flexible transparent conducting applications. ACS Applied Electronic Materials, 2(4), 1000–1010. https://doi.org/10.1021/acsaelm.0c00061
  • Naito, K., Tanaka, Y., Yang, J.-M., & Kagawa, Y. (2008). Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers. Carbon, 46(2), 189–195. https://doi.org/10.1016/j.carbon.2007.11.001
  • Nam, G., & Yoon, S.-H. (2019). Predicting the temporal wetting of porous, surfactant-added polydimethylsiloxane (PDMS). Journal of Colloid and Interface Science, 556, 503–513. https://doi.org/10.1016/j.jcis.2019.08.081
  • Natsuki, J., Natsuki, T., & Hashimoto, Y. (2015). A review of silver nanoparticles: Synthesis methods, properties and applications. International Journal of Materials Science and Applications, 4(5), 325–332.
  • Nayak, L., Mohanty, S., Nayak, S. K., & Ramadoss, A. (2019). A review on inkjet printing of nanoparticle inks for flexible electronics. Journal of Materials Chemistry C, 7(29), 8771–8795. https://doi.org/10.1039/C9TC01630A
  • Nikolova, B. M., Nikolov, G. T., Gieva, E. E., & Ruskova, I. N. (2018). Functional inks for inkjet printed sensors. 2018 IX National Conference with International Participation (ELECTRONICA), Sofia, pp. 1–4. https://doi.org/10.1109/ELECTRONICA.2018.8439600
  • Niu, B., Yang, S., Hua, T., Tian, X., & Koo, M. (2021). Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearable applications. Nano Research, 14(4), 1043–1052. https://doi.org/10.1007/s12274-020-3148-3
  • Niu, Y., Omurzak, E., Cai, R., Syrgakbek kyzy, D., Zhasnakunov, Z., Satyvaldiev, A., & Palmer, R. E. (2022). Eco-friendly synthesis of silver nanoparticles using pulsed plasma in liquid: Effect of surfactants. Surfaces, 5(1), 202–208. https://doi.org/10.3390/surfaces5010013
  • Notley, S. M. (2012). Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition. Langmuir, 28(40), 14110–14113. https://doi.org/10.1021/la302750e
  • O’Neill, A., Khan, U., Nirmalraj, P. N., Boland, J., & Coleman, J. N. (2011). Graphene dispersion and exfoliation in low boiling point solvents. The Journal of Physical Chemistry C, 115(13), 5422–5428. https://doi.org/10.1021/jp110942e
  • Oh, S. W., Kim, C. W., Cha, H. J., Pal, U., & Kang, Y. S. (2009). Encapsulated-dye all-organic charged colored ink nanoparticles for electrophoretic image display. Advanced Materials, 21(48), 4987–4991. https://doi.org/10.1002/adma.200901595
  • Öhlund, T., Örtegren, J., Forsberg, S., & Nilsson, H.-E. (2012). Paper surfaces for metal nanoparticle inkjet printing. Applied Surface Science, 259, 731–739. https://doi.org/10.1016/j.apsusc.2012.07.112
  • Ojuroye, O., Torah, R., Beeby, S., & Wilde, A. (2017). Smart textiles for smart home control and enriching future wireless sensor network data. In O. A. Postolache, S. C. Mukhopadhyay, K. P. Jayasundera, & A. K. Swain (Eds.), Sensors for everyday life: Healthcare settings (pp. 159–183). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-47319-2_9
  • Okuzaki, H., Harashina, Y., & Yan, H. (2009). Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. European Polymer Journal, 45(1), 256–261. https://doi.org/10.1016/j.eurpolymj.2008.10.027
  • Orava, J., Kaban, I., Benkocka, M., Han, X., Soldatov, I., & Greer, A. L. (2019). Fast-heating-induced formation of metallic-glass/crystal composites with enhanced plasticity. Thermochimica Acta, 677, 198–205. https://doi.org/10.1016/j.tca.2019.03.029
  • Ortega-Arroyo, L., Martin-Martinez, E. S., Aguilar-Mendez, M. A., Cruz-Orea, A., Hernandez-Pérez, I., & Glorieux, C. (2013). Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response. Starch - Stärke, 65(9–10), 814–821. https://doi.org/10.1002/star.201200255
  • Otsubo, Y., & Horigome, M. (2003). Effect of associating polymer on the dispersion stability and rheology of suspensions. Korea-Australia Rheology Journal, 15(1), 27–33.
  • Ouedghiri-Idrissi, I. E., Lougdali, M., Makir, Z., Niasse, O. A., & Sofiani, Z. (2022). Photoluminescence of organic thin film Copper phthalocyanine CuPc for LED application. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.03.294
  • Ouyang, J., Chu, C.-W., Chen, F.-C., Xu, Q., & Yang, Y. (2005). High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Advanced Functional Materials, 15(2), 203–208. https://doi.org/10.1002/adfm.200400016
  • Padrón-Hernández, W. Y., Ceballos-Chuc, M. C., Pourjafari, D., Oskam, G., Tinoco, J. C., Martínez-López, A. G., & Rodríguez-Gattorno, G. (2018). Stable inks for inkjet printing of TiO2 thin films. Materials Science in Semiconductor Processing, 81, 75–81. https://doi.org/10.1016/j.mssp.2018.03.015
  • Pang, Y., Zhang, K., Yang, Z., Jiang, S., Ju, Z., Li, Y., … Ren, T.-L. (2018). Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano, 12(3), 2346–2354. https://doi.org/10.1021/acsnano.7b07613
  • Park, J., Kim, J., Kim, K., Kim, S.-Y., Cheong, W. H., Park, K., … Park, J.-U. (2016). Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale, 8(20), 10591–10597. https://doi.org/10.1039/C6NR01468B
  • Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217–224. https://doi.org/10.1038/nnano.2009.58
  • Parveen, K., Banse, V., & Ledwani, L. (2016). Green synthesis of nanoparticles: Their advantages and disadvantages. AIP Conference Proceedings, 1724(1), 020048. https://doi.org/10.1063/1.4945168
  • Parvez, K., Worsley, R., Alieva, A., Felten, A., & Casiraghi, C. (2019). Water-based and inkjet printable inks made by electrochemically exfoliated graphene. Carbon, 149, 213–221. https://doi.org/10.1016/j.carbon.2019.04.047
  • Pei, L., & Li, Y.-F. (2017). Rapid and efficient intense pulsed light reduction of graphene oxide inks for flexible printed electronics. RSC Advances, 7(81), 51711–51720. https://doi.org/10.1039/C7RA10416B
  • Peng, X., Lu, A., Sun, Q., Xu, N., Xie, Y., Wu, J., & Cheng, J. (2022). Design of H-shape chamber in thermal bubble printer. Micromachines, 13(2), 194. https://doi.org/10.3390/mi13020194
  • Polavarapu, L., Manga, K. K., Cao, H. D., Loh, K. P., & Xu, Q.-H. (2011). Preparation of conductive silver films at mild temperatures for printable organic electronics. Chemistry of Materials, 23(14), 3273–3276. https://doi.org/10.1021/cm200471s
  • Rafique, M., Sadaf, I., Rafique, M. S., & Tahir, M. B. (2017). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology, 45(7), 1272–1291. https://doi.org/10.1080/21691401.2016.1241792
  • Ridgway, C. J., Gane, P. A. C., & Schoelkopf, J. (2002). Effect of capillary element aspect ratio on the dynamic imbibition within porous networks. Journal of Colloid and Interface Science, 252(2), 373–382. https://doi.org/10.1006/jcis.2002.8468
  • Rotzler, S., Kallmayer, C., Dils, C., von Krshiwoblozki, M., Bauer, U., & Schneider-Ramelow, M. (2020). Improving the washability of smart textiles: Influence of different washing conditions on textile integrated conductor tracks. The Journal of the Textile Institute, 111(12), 1766–1777. https://doi.org/10.1080/00405000.2020.1729056
  • Saghlatoon, H., Sydänheimo, L., Ukkonen, L., & Tentzeris, M. (2014). Optimization of inkjet printing of patch antennas on low-cost fibrous substrates. IEEE Antennas and Wireless Propagation Letters, 13, 915–918. https://doi.org/10.1109/LAWP.2014.2322572
  • Saidina, D. S., Mariatti, M., Zubir, S. A., Fontana, S., & Hérold, C. (2019). Performance of graphene hybrid-based ink for flexible electronics. Journal of Materials Science: Materials in Electronics, 30(22), 19906–19916. https://doi.org/10.1007/s10854-019-02357-y
  • Salavagione, H. J., Gómez-Fatou, M. A., Shuttleworth, P. S., & Ellis, G. J. (2018). New perspectives on graphene/polymer fibers and fabrics for smart textiles: The relevance of the polymer/graphene interphase. Frontiers in Materials, 5, 18. https://doi.org/10.3389/fmats.2018.00018
  • Samak, N. A., Jia, Y., Sharshar, M. M., Mu, T., Yang, M., Peh, S., & Xing, J. (2020). Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environment International, 145, 106144. https://doi.org/10.1016/j.envint.2020.106144
  • Schwartz, G., Tee, B. C.-K., Mei, J., Appleton, A. L., Kim, D. H., Wang, H., & Bao, Z. (2013). Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications, 4(1), 1859. https://doi.org/10.1038/ncomms2832
  • Secor, E. B., Prabhumirashi, P. L., Puntambekar, K., Geier, M. L., & Hersam, M. C. (2013). Inkjet printing of high conductivity, flexible graphene patterns. The Journal of Physical Chemistry Letters, 4(8), 1347–1351. https://doi.org/10.1021/jz400644c
  • Sethi, S. K., & Manik, G. (2018). Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications: A review. Polymer-Plastics Technology and Engineering, 57(18), 1932–1952. https://doi.org/10.1080/03602559.2018.1447128
  • Shah, J., & Brown, R. M. (2005). Towards electronic paper displays made from microbial cellulose. Applied Microbiology and Biotechnology, 66(4), 352–355. https://doi.org/10.1007/s00253-004-1756-6
  • Shahariar, H., Kim, I., Bhakta, R., & Jur, J. S. (2020). Direct-write printing process of conductive paste on fiber bulks for wearable textile heaters. Smart Materials and Structures, 29(8), 085018. https://doi.org/10.1088/1361-665X/ab8c25
  • Shelley, K. H. (2007). Photoplethysmography: Beyond the calculation of arterial oxygen saturation and heart rate. Anesthesia and Analgesia, 105(6 Suppl), S31–S36. https://doi.org/10.1213/01.ane.0000269512.82836.c9
  • Shen, W., Zhang, X., Huang, Q., Xu, Q., & Song, W. (2014). Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale, 6(3), 1622–1628. https://doi.org/10.1039/C3NR05479A
  • Simegnaw, A. A., Malengier, B., Rotich, G., Tadesse, M. G., & Van Langenhove, L. (2021). Review on the integration of microelectronics for E-textile. Materials, 14(17), 5113. https://doi.org/10.3390/ma14175113
  • Simorangkir, R. B. V. B., Le, D., Björninen, T., Md. Sayem, A. S., Zhadobov, M., & Sauleau, R. (2019). Washing durability of PDMS-conductive fabric composite: Realizing washable UHF RFID tags. IEEE Antennas and Wireless Propagation Letters, 18(12), 2572–2576. https://doi.org/10.1109/LAWP.2019.2943535
  • Slepička, P., Slepičková Kasálková, N., Siegel, J., Kolská, Z., & Švorčík, V. (2019). Methods of gold and silver nanoparticles preparation. Materials, 13(1), 1. https://doi.org/10.3390/ma13010001
  • Słoma, M., Głód, M. A., & Wałpuski, B. (2021). Printed flexible thermoelectric nanocomposites based on carbon nanotubes and polyaniline. Materials, 14(15), 4122. https://doi.org/10.3390/ma14154122
  • Soe, H. M., Abd Manaf, A., Matsuda, A., & Jaafar, M. (2021). Performance of a silver nanoparticles-based polydimethylsiloxane composite strain sensor produced using different fabrication methods. Sensors and Actuators A: Physical, 329, 112793. https://doi.org/10.1016/j.sna.2021.112793
  • Soleimani-Gorgani, A. (2018). Co-solvents roles in PEDOT:PSS ink-jet inks. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(2), 025009. https://doi.org/10.1088/2043-6254/aac2a0
  • Sousa, S. C. L., de, A., Mendes, O., Fiadeiro, P. T., & Ramos, A. M. M. (2014). Dynamic interactions of pigment-based inks on chemically modified papers and their influence on inkjet print quality. Industrial & Engineering Chemistry Research, 53(12), 4660–4668. https://doi.org/10.1021/ie403595f
  • Sowade, E., Mitra, K. Y., Ramon, E., Martinez-Domingo, C., Villani, F., Loffredo, F., … Baumann, R. R. (2016). Up-scaling of the manufacturing of all-inkjet-printed organic thin-film transistors: Device performance and manufacturing yield of transistor arrays. Organic Electronics, 30, 237–246. https://doi.org/10.1016/j.orgel.2015.12.018
  • Sreenilayam, S. P., Ahad, I. U., Nicolosi, V., Acinas Garzon, V., & Brabazon, D. (2020). Advanced materials of printed wearables for physiological parameter monitoring. Materials Today, 32, 147–177. https://doi.org/10.1016/j.mattod.2019.08.005
  • Stempien, Z., Khalid, M., Kozicki, M., Kozanecki, M., Varela, H., Filipczak, P., … Sąsiadek, E. (2019). In-situ deposition of reduced graphene oxide layers on textile surfaces by the reactive inkjet printing technique and their use in supercapacitor applications. Synthetic Metals, 256, 116144. https://doi.org/10.1016/j.synthmet.2019.116144
  • Sun, H., Xie, S., Li, Y., Jiang, Y., Sun, X., Wang, B., & Peng, H. (2016). Large-area supercapacitor textiles with novel hierarchical conducting structures. Advanced Materials, 28(38), 8431–8438. https://doi.org/10.1002/adma.201602987
  • Sun, Y., Guo, G., Yang, B., Tian, Y., He, M., Liu, Y., & Zhao, G. (2011). Facile synthesis of polyaniline micro-rods with high yield. Synthetic Metals, 161(21–22), 2206–2210. https://doi.org/10.1016/j.synthmet.2011.07.022
  • Sun, Z., Shu, M., Li, W., Li, P., Zhang, Y., Yao, H., & Guan, S. (2020). Enhanced thermoelectric performance of PEDOT:PSS self-supporting thick films through a binary treatment with polyethylene glycol and water. Polymer, 192, 122328. https://doi.org/10.1016/j.polymer.2020.122328
  • Sundriyal, P., & Bhattacharya, S. (2018). Inkjet-printed sensors on flexible substrates. In S. Bhattacharya, A. K. Agarwal, N. Chanda, A. Pandey, & A. K. Sen (Eds.), Environmental, chemical and medical sensors (pp. 89–113). Singapore: Springer. https://doi.org/10.1007/978-981-10-7751-7_5
  • Suresh, R. R., Lakshmanakumar, M., Arockia Jayalatha, J. B. B., Rajan, K. S., Sethuraman, S., Krishnan, U. M., & Rayappan, J. B. B. (2021). Fabrication of screen-printed electrodes: Opportunities and challenges. Journal of Materials Science, 56(15), 8951–9006. https://doi.org/10.1007/s10853-020-05499-1
  • Svatek, S. A., Kerfoot, J., Summerfield, A., Nizovtsev, A. S., Korolkov, V. V., Taniguchi, T., … Beton, P. H. (2020). Triplet excitation and electroluminescence from a supramolecular monolayer embedded in a boron nitride tunnel barrier. Nano Letters, 20(1), 278–283. https://doi.org/10.1021/acs.nanolett.9b03787
  • Szcześniak, L., Rachocki, A., & Tritt-Goc, J. (2008). Glass transition temperature and thermal decomposition of cellulose powder. Cellulose, 15(3), 445–451. https://doi.org/10.1007/s10570-007-9192-2
  • Tadesse, M. G., Mengistie, D. A., Chen, Y., Wang, L., Loghin, C., & Nierstrasz, V. (2019). Electrically conductive highly elastic polyamide/lycra fabric treated with PEDOT:PSS and polyurethane. Journal of Materials Science, 54(13), 9591–9602. https://doi.org/10.1007/s10853-019-03519-3
  • Takei, K., Honda, W., Harada, S., Arie, T., & Akita, S. (2015). Toward flexible and wearable human-interactive health-monitoring devices. Advanced Healthcare Materials, 4(4), 487–500. https://doi.org/10.1002/adhm.201400546
  • Tamim, S. I., & Bostwick, J. B. (2019). The elastic Rayleigh drop. Soft Matter, 15(45), 9244–9252. https://doi.org/10.1039/C9SM01753D
  • Tan, H. (2017). Absorption of picoliter droplets by thin porous substrates. AIChE Journal, 63(5), 1690–1703. https://doi.org/10.1002/aic.15525
  • Tasaengtong, B., & Sameenoi, Y. (2020). A one-step polymer screen-printing method for fabrication of microfluidic cloth-based analytical devices. Microchemical Journal, 158, 105078. v. https://doi.org/10.1016/j.microc.2020.105078
  • Tebyetekerwa, M., Marriam, I., Xu, Z., Yang, S., Zhang, H., Zabihi, F., … Ramakrishna, S. (2019). Critical insight: Challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy & Environmental Science, 12(7), 2148–2160. https://doi.org/10.1039/C8EE02607F
  • Tetsu, Y., Kido, Y., Hao, M., Takeoka, S., Maruyama, T., & Fujie, T. (2020). Graphene/Au hybrid antenna coil exfoliated with multi-stacked graphene flakes for ultra-thin biomedical devices. Advanced Electronic Materials, 6(2), 1901143. https://doi.org/10.1002/aelm.201901143
  • Topno, N. R., Sundriyal, P., & Bhattacharya, S. (2019). Future of OLEDs technology in wearable textiles. In Research into design for a connected world (pp. 575-584). Singapore: Springer. https://doi.org/10.1007/978-981-13-5974-3_50
  • Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T. S., Hsieh, G.-W., Ferrari, A. C. (2012). Inkjet-printed graphene electronics, ACS Nano, 6(4), 2992–3006. https://doi.org/10.1021/nn2044609
  • Tran, T. S., Dutta, N. K., & Choudhury, N. R. (2018). Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications. Advances in Colloid and Interface Science, 261, 41–61. https://doi.org/10.1016/j.cis.2018.09.003
  • Uzun, S., Schelling, M., Hantanasirisakul, K., Mathis, T. S., Askeland, R., Dion, G., & Gogotsi, Y. (2021). Additive-free aqueous MXene inks for thermal inkjet printing on textiles. Small, 17(1), 2006376. https://doi.org/10.1002/smll.202006376
  • Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., & Rokhum, S. L. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances, 11(5), 2804–2837. https://doi.org/10.1039/D0RA09941D
  • Vedovatte, R. M., Saccardo, M. C., Costa, E. L., & Cava, C. E. (2020). PEDOT:PSS post-treated by DMSO using spin coating, roll-to-roll and immersion: A comparative study. Journal of Materials Science: Materials in Electronics, 31(1), 317–323. https://doi.org/10.1007/s10854-019-02524-1
  • Verboven, I., Stryckers, J., Mecnika, V., Vandevenne, G., Jose, M., & Deferme, W. (2018). Printing smart designs of light emitting devices with maintained textile properties. Materials, 11(2), 290. https://doi.org/10.3390/ma11020290
  • Verma, C., Ebenso, E. E., Quraishi, M. A., & Rhee, K. Y. (2021). Phthalocyanine, naphthalocyanine and their derivatives as corrosion inhibitors: A review. Journal of Molecular Liquids, 334, 116441. https://doi.org/10.1016/j.molliq.2021.116441
  • Vitas, S., Segmehl, J. S., Burgert, I., & Cabane, E. (2019). Porosity and pore size distribution of native and delignified beech wood determined by mercury intrusion porosimetry. Materials, 12(3), 416. https://doi.org/10.3390/ma12030416
  • Wageh, S., Raïssi, M., Berthelot, T., Al-Ghamdi, A. A., Abusorrah, A. M., Boukhili, W., & Al-Hartomy, O. A. (2021). Silver nanowires digital printing for inverted flexible semi-transparent solar cells. Advanced Engineering Materials, 23(4), 2001305. https://doi.org/10.1002/adem.202001305
  • Wang, J., Liu, Y., Fan, Z., Wang, W., Wang, B., & Guo, Z. (2019). Ink-based 3D printing technologies for graphene-based materials: A review. Advanced Composites and Hybrid Materials, 2(1), 1–33. https://doi.org/10.1007/s42114-018-0067-9
  • Wang, J., Zhang, W., Yin, Q., Yin, B., & Jia, H. (2020). Highly sensitive and flexible strain sensors based on natural rubber/graphene foam composites: The role of pore sizes of graphene foam. Journal of Materials Science: Materials in Electronics, 31(1), 125–133. https://doi.org/10.1007/s10854-019-01698-y
  • Wang, T., Qi, Y., Xu, J., Hu, X., & Chen, P. (2005). Effects of poly(ethylene glycol) on electrical conductivity of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) film. Applied Surface Science, 250(1–4), 188–194. https://doi.org/10.1016/j.apsusc.2004.12.051
  • Wang, X.-X., Yu, G.-F., Zhang, J., Yu, M., Ramakrishna, S., & Long, Y.-Z. (2021). Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science, 115, 100704. https://doi.org/10.1016/j.pmatsci.2020.100704
  • Wang, Y. H., Du, D. X., Xie, H., Zhang, X. B., Lin, K. W., Wang, K., & Fu, E. (2021). Printability and electrical conductivity of silver nanoparticle-based conductive inks for inkjet printing. Journal of Materials Science: Materials in Electronics, 32(1), 496–508. https://doi.org/10.1007/s10854-020-04828-z
  • Wang, Y., & Liang, D. (2010). Solvent-Stabilized Photoconductive Metal Phthalocyanine Nanoparticles: Preparation and Application in Single-Layered Photoreceptors. Advanced Materials, 22(13), 1521–1525. https://doi.org/10.1002/adma.200903120
  • Wang, Y., Ali, S., Wijekoon, J., Gong, R. H., & Fernando, A. (2018). A wearable piezo-resistive sensor for capturing cardiorespiratory signals. Sensors and Actuators A: Physical, 282, 215–229. https://doi.org/10.1016/j.sna.2018.09.015
  • Wang, Y., Fan, X., Li, A., Shang, L., & Wang, H. (2018). Deposition of fine particles on vertical textile surfaces: A small-scale chamber study. Building and Environment, 135, 308–317. https://doi.org/10.1016/j.buildenv.2018.03.003
  • Wang, Y. Guo, H., Chen, J.-J., Sowade, E., Wang, Y., Liang, K., … Feng, Z.-S. (2016). Paper-based inkjet-printed flexible electronic circuits. ACS Applied Materials and Interfaces, 8(39), 26112–26118. https://doi.org/10.1021/acsami.6b06704
  • Wang, Y., Huang, Y., Li, Y-z., Cheng, P., Cheng, S-y., Liang, Q., … Feng, Z-s. (2021). A facile process combined with roll-to-roll flexographic printing and electroless deposition to fabricate RFID tag antenna on paper substrates. Composites Part B: Engineering, 224, 109194. https://doi.org/10.1016/j.compositesb.2021.109194
  • Wei, T.-C., Chen, S.-H., & Chen, C.-Y. (2020). Highly conductive PEDOT:PSS film made with ethylene-glycol addition and heated-stir treatment for enhanced photovoltaic performances. Materials Chemistry Frontiers, 4(11), 3302–3309. https://doi.org/10.1039/D0QM00529K
  • Weng, G., Yang, Y., Zhao, J., Li, J., Zhu, J., & Zhao, J. (2020). Improving the SERS enhancement and reproducibility of inkjet-printed Au NP paper substrates by second growth of Ag nanoparticles. Materials Chemistry and Physics, 253, 123416. https://doi.org/10.1016/j.matchemphys.2020.123416
  • Weremczuk, J., Tarapata, G., & Jachowicz, R. (2012). Humidity sensor printed on textile with use of ink-jet technology. Procedia Engineering, 47, 1366–1369. https://doi.org/10.1016/j.proeng.2012.09.410
  • Wijshoff, H. (2010). The dynamics of the piezo inkjet printhead operation. Physics Reports, 491(4–5), 77–177. https://doi.org/10.1016/j.physrep.2010.03.003
  • Wijshoff, H. (2018). Drop dynamics in the inkjet printing process. Current Opinion in Colloid & Interface Science, 36, 20–27. https://doi.org/10.1016/j.cocis.2017.11.004
  • Woo, K., Jang, D., Kim, Y., & Moon, J. (2013). Relationship between printability and rheological behavior of ink-jet conductive inks. Ceramics International, 39(6), 7015–7021. https://doi.org/10.1016/j.ceramint.2013.02.039
  • Wu, R., Ma, L., Liu, S., Patil, A. B., Hou, C., Zhang, Y., … Liu, X. Y. (2020). Fibrous inductance strain sensors for passive inductance textile sensing. Materials Today Physics, 15, 100243. https://doi.org/10.1016/j.mtphys.2020.100243
  • Wünscher, S., Abbel, R., Perelaer, J., & Schubert, U. S. (2014). Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. Journal of Materials Chemistry C, 2(48), 10232–10261. https://doi.org/10.1039/C4TC01820F
  • Xiong, Y., McLellan, J. M., Chen, J., Yin, Y., Li, Z.-Y., & Xia, Y. (2005). Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. Journal of the American Chemical Society, 127(48), 17118–17127. https://doi.org/10.1021/ja056498s
  • Xiong, Z., & Liu, C. (2012). Optimization of inkjet printed PEDOT:PSS thin films through annealing processes. Organic Electronics, 13(9), 1532–1540. https://doi.org/10.1016/j.orgel.2012.05.005
  • Xu, C., Shi, X., Ji, A., Shi, L., Zhou, C., & Cui, Y. (2015). Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS One, 10(12), e0144842. https://doi.org/10.1371/journal.pone.0144842
  • Xu, T., Jin, J., Gregory, C., Hickman, J. J., & Boland, T. (2005). Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 93–99. https://doi.org/10.1016/j.biomaterials.2004.04.011
  • Xu, Y., Cao, H., Xue, Y., Li, B., & Cai, W. (2018). Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges. Nanomaterials, 8(11), 942. https://doi.org/10.3390/nano8110942
  • Xu, Y., Hennig, I., Freyberg, D., James Strudwick, A., Georg Schwab, M., Weitz, T., & Chih-Pei Cha, K. (2014). Inkjet-printed energy storage device using graphene/polyaniline inks. Journal of Power Sources, 248, 483–488. https://doi.org/10.1016/j.jpowsour.2013.09.096
  • Xu, Y., Wei, X., Wang, C., Cao, J., Chen, Y., Ma, Z., … Chen, X. (2017). Silver nanowires modified with PEDOT: PSS and graphene for organic light-emitting diodes anode. Scientific Reports, 7(1), 45392. https://doi.org/10.1038/srep45392
  • Yagodin, A. V., Martynov, A. G., Gorbunova, Y. G., & Tsivadze, A. Y. (2020). Synthesis, electronic structure and NH-tautomerism of novel mono- and dibenzoannelated phthalocyanines. Dyes and Pigments, 181, 108564. https://doi.org/10.1016/j.dyepig.2020.108564
  • Yang, L., Zhang, R., Staiculescu, D., Wong, C. P., & Tentzeris, M. M. (2009). A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Antennas and Wireless Propagation Letters, 8, 653–656. https://doi.org/10.1109/LAWP.2009.2024104
  • Yang, M., Pan, J., Luo, L., Xu, A., Huang, J., Xia, Z., … Wang, X. (2019). CNT/cotton composite yarn for electro-thermochromic textiles. Smart Materials and Structures, 28(8), 085003. https://doi.org/10.1088/1361-665X/ab21ef
  • Yang, S., Li, C., Chen, X., Zhao, Y., Zhang, H., Wen, N., … Pan, L. (2020). Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Applied Materials & Interfaces, 12(17), 19874–19881. https://doi.org/10.1021/acsami.9b22534
  • Yang, W., Wang, C., Arrighi, V., & Vilela, F. (2017). One step synthesis of a hybrid Ag/rGO conductive ink using a complexation–covalent bonding based approach. Journal of Materials Science: Materials in Electronics, 28(11), 8218–8230. https://doi.org/10.1007/s10854-017-6533-2
  • Yang, Y., Deng, H., & Fu, Q. (2020). Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Materials Chemistry Frontiers, 4(11), 3130–3152. https://doi.org/10.1039/D0QM00308E
  • Yanılmaz, M., & Sarac, A. S. (2014). A review: Effect of conductive polymers on the conductivities of electrospun mats. Textile Research Journal, 84(12), 1325–1342. https://doi.org/10.1177/0040517513495943
  • Yazdanpanah, A. (2019). Synthetic route of PANI (V): Electrochemical polymerization. In Fundamentals and emerging applications of polyaniline (pp. 105-119). New York, NY: Elsevier. https://doi.org/10.1016/B978-0-12-817915-4.00006-3
  • Yeo, W.-H., Kim, Y.-S., Lee, J., Ameen, A., Shi, L., Li, M., … Rogers, J. A. (2013). Multifunctional epidermal electronics printed directly onto the skin. Advanced Materials, 25(20), 2773–2778. https://doi.org/10.1002/adma.201204426
  • Yildirim, E., Wu, G., Yong, X., Tan, T. L., Zhu, Q., Xu, J., … Yang, S.-W. (2018). A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS. Journal of Materials Chemistry C, 6(19), 5122–5131. https://doi.org/10.1039/C8TC00917A
  • Yin, B., Liu, X., Gao, H., Fu, T., & Yao, J. (2018). Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nature Communications, 9(1), 5161. https://doi.org/10.1038/s41467-018-07672-2
  • Yousaf, M., Shi, H. T. H., Wang, Y., Chen, Y., Ma, Z., Cao, A., … Han, R. P. S. (2016). Novel pliable electrodes for flexible electrochemical energy storage devices: Recent progress and challenges. Advanced Energy Materials, 6(17), 1600490. https://doi.org/10.1002/aenm.201600490
  • Yu, L., Feng, Y., S/O M Tamil Selven, D., Yao, L., Soon, R. H., Yeo, J. C., & Lim, C. T. (2019). Dual-core capacitive microfiber sensor for smart textile applications. ACS Applied Materials & Interfaces, 11(36), 33347–33355. https://doi.org/10.1021/acsami.9b10937
  • Zeagler, C., Gilliland, S., Audy, S., & Starner, T. (2013). Can I wash it? The effect of washing conductive materials used in making textile based wearable electronic interfaces. Proceedings of the 2013 International Symposium on Wearable Computers, pp. 143–144.
  • Zhai, S., Jiang, W., Wei, L., Karahan, H. E., Yuan, Y., Ng, A. K., & Chen, Y. (2015). All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles. Materials Horizons, 2(6), 598–605. https://doi.org/10.1039/C5MH00108K
  • Zhai, S., Karahan, H. E., Wei, L., Qian, Q., Harris, A. T., Minett, A. I., … Chen, Y. (2016). Textile energy storage: Structural design concepts, material selection and future perspectives. Energy Storage Materials, 3, 123–139. https://doi.org/10.1016/j.ensm.2016.02.003
  • Zhang, K., Fang, K., Bukhari, M. N., Xie, R., Song, Y., Tang, Z., & Zhang, X. (2020). The effect of ink drop spreading and coalescing on the image quality of printed cotton fabric. Cellulose, 27(16), 9725–9736. https://doi.org/10.1007/s10570-020-03446-6
  • Zhang, L., Wang, Z., & Volakis, J. L. (2012). Textile antennas and sensors for body-worn applications. IEEE Antennas and Wireless Propagation Letters, 11, 1690–1693. https://doi.org/10.1109/LAWP.2013.2239956
  • Zhang, Q., Yang, Z., Ding, B., Lan, X., & Guo, Y. (2010). Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Transactions of Nonferrous Metals Society of China, 20, s240–s244. https://doi.org/10.1016/S1003-6326(10)60047-7
  • Zhang, R., Peng, B., & Yuan, Y. (2018). Flexible printed humidity sensor based on poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/Au nanoparticles with high performance. Composites Science and Technology, 168, 118–125. https://doi.org/10.1016/j.compscitech.2018.09.013
  • Zheng, J., Cheng, Y., Huang, Y., Wang, S., Liu, L., & Chen, G. (2020). Drop impacting on a surface with adjustable wettability based on the dielectrowetting effect. Physics of Fluids, 32(9), 097108. https://doi.org/10.1063/5.0023287
  • Zhou, J. X., Fuh, J. Y. H., Loh, H. T., Wong, Y. S., Ng, Y. S., Gray, J. J., & Chua, S. J. (2010). Characterization of drop-on-demand microdroplet printing. The International Journal of Advanced Manufacturing Technology, 48(1–4), 243–250. https://doi.org/10.1007/s00170-009-2274-6
  • Zhou, W., Yutronkie, N. J., Lessard, B. H., & Brusso, J. L. (2021). From chemical curiosity to versatile building blocks: Unmasking the hidden potential of main-group phthalocyanines in organic field-effect transistors. Materials Advances, 2(1), 165–185. https://doi.org/10.1039/D0MA00864H
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906–3924. https://doi.org/10.1002/adma.201001068

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.