141
Views
23
CrossRef citations to date
0
Altmetric
Original

Emerging evidence for the interrelationship of xenobiotic exposure and circadian rhythms: a review

, , &
Pages 1140-1151 | Received 22 Mar 2006, Accepted 02 Jun 2006, Published online: 11 Aug 2009

References

  • Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Current Biology 2002; 12: 540–550
  • Albrecht U, Eichele G. The mammalian circadian clock. Current Opinion in Genetics and Development 2003; 13: 271–277
  • Ando H, Yanagihara H, Sugimoto K, Hayashi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A. Daily rhythms of P-glycoprotein expression in mice. Chronobiology International 2005; 22: 655–665
  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000; 289: 2344–2347
  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran M J. Circadian rhythms from multiple oscillators. Lessons from diverse organisms. Nature Reviews Genetics 2005; 6: 544–556
  • Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070–1073
  • Bjarnason GA, Jordan RCK, Sothern RB. Circadian variation in the expression of cell-cycle proteins in human oral epithelium. American Journal of Pathology 1999; 154: 613–622
  • Boorman GA, Blackshear PE, Parker JS, Lobenhofer EK, Malarkey DE, Vallant MK, Gerken DK, Irwin RD. Hepatic gene expression changes throughout the day in the Fischer rat: Implications for toxicogenomic experiments. Toxicology Science 2005; 86: 185–193
  • Bruguerolle B. Chronopharmacokinetics. Current status. Clinical Pharmacokinetics 1998; 35: 83–94
  • Chu WL. Phoqus’ Phase I study heralds first Circadian drug. 2005, Drug Researcher.com [News headlines > emerging targets 08/12/2005] (available at: http://tinyurl.com/7qury) (accessed on 31 January 2006)
  • Currie RA, Bombail V, Oliver JD, Moore DJ, Lim FL, Gwilliam V, Kimber I, Chipman K, Moggs JG, Orphanides G. Gene ontology mapping as an unbiased method for identifying molecular pathways and processes affected by toxicant exposure: Application to acute effects caused by the rodent non-genotoxic carcinogen diethylhexylphthalate. Toxicology Science 2005; 86: 453–469
  • Damiola F, Le Min N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Development 2000; 14: 2950–2961
  • De la Iglesia HO, Schwartz WJ. Timely ovulation: Circadian regulation of the female hypothalamo-pituitary-gonadal axis. Endocrinology 2006; 147: 1148–1153
  • Desai VG, Moland CL, Branham WS, Delongchamp RR, Fang H, Duffy PH, Peterson CA, Beggs ML, Fuscoe JC. Changes in expression level of genes as a function of time of day in the liver of rats. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2004; 549: 115–129
  • Dridi D, Boughattas NA, Aouam K, Reinberg A, Ben Attia M. Circadian time-dependent differences in murine tolerance to the antihistaminic agent loratadine. Chronobiology International 2005; 22: 499–514
  • Duffield GE. DNA microarray analyses of circadian timing: The genomic basis of biological time. Journal of Neuroendocrinology 2003; 15: 991–1002
  • Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Current Biology 2002; 12: 551–557
  • Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM. Control of mammalian circadian rhythm by CKIϵ-regulated proteasome-mediated PER2 degradation. Molecular Cell Biology 2005; 25: 2795–2807
  • Filipski E, Delaunay F, King VM, Wu M-W, Claustrat B, Grechez-Cassiau A, Guettier C, Hastings MH, Francis L. Effects of chronic jet lag on tumor progression in mice. Cancer Research 2004; 64: 7879–7885
  • Filipski E, Innominato PF, Wu M, Li X-M, Iacobelli S, Xian L-J, Levi F. Effects of light and food schedules on liver and tumor molecular clocks in mice. Journal of the National Cancer Institute 2005; 97: 507–517
  • Filipski E, King VM, Li X, Granda TG, Mormont M-C, Claustrat B, Hastings MH, Levi F. Disruption of circadian coordination accelerates malignant growth in mice. Pathologie et Biologie 2003; 51: 216–219
  • Fletcher N, Wahlstrom D, Lundberg R, Nilsson CB, Nilsson KC, Stockling K, Hellmold H, Hakansson H. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters the mRNA expression of critical genes associated with cholesterol metabolism, bile acid biosynthesis, and bile transport in rat liver: A microarray study. Toxicology and Applied Pharmacology 2005; 207: 1–24
  • Fu L, Lee CC. The circadian clock: Pacemaker and tumour suppressor. Nature Review of Cancer 2003; 3: 350–361
  • Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U. The mammalian circadian timing system: From gene expression to physiology. Chromosoma 2004; 113: 103–112
  • Gene Expression Omnibus (GEO) database, (available at: http://www.ncbi.nlm.nih.gov/geo/)
  • Gery S, Gombart AF, Yi WS, Koeffler C, Hofmann WK, Koeffler HP. Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia. Blood 2005; 106: 2827–2836
  • Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP. The circadian gene Per1 plays an important role in cell growth and DNA damage control in human cancer cells. Molecular Cell 2006; 22: 375–382
  • Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. Journal of Neuroscience 2003; 23: 7093–7106
  • Gorbacheva VY, Kondratov RV, Zhang R, Cherukuri S, Gudkov AV, Takahashi JS, Antoch MP. Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proceedings of the National Academy of Sciences, USA 2005; 102: 3407–3412
  • Hardin PE. Transcription regulation within the circadian clock: The E-box and beyond. Journal of Biological Rhythms 2004; 19: 348–360
  • Hermida RC, Ayala DE, Calvo C. Administration-time-dependent effects of antihypertensive treatment on the circadian pattern of blood pressure. Current Opinions in Nephrology and Hypertension 2005; 14: 453–459
  • Huang W, Zhang J, Chua SS, Qatanani M, Han Y, Granata R, Moore DD. Induction of bilirubin clearance by the constitutive androstane receptor (CAR). Proceedings of the National Academy of Sciences, USA 2003; 100: 4156–4161
  • Inoue I, Shinoda Y, Ikeda M, Hayashi K, Kanazawa K, Nomura M, Matsunaga T, Xu H, Kawai S, Awata T, Komoda T, Katayama S. CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. Journal of Atherosclerosis and Thrombosis 2005; 12: 169–174
  • Isojima Y, Okumura N, Nagai K. Molecular mechanism of mammalian circadian clock. Journal of Biochemistry (Tokyo) 2003; 134: 777–784
  • Johnson EF, Hsu M-H, Savas U, Griffin KJ. Regulation of P450 4A expression by peroxisome proliferator activated receptors. Toxicology 2002; 181(2)203–206
  • Kalsbeek A, Buijs R. Output pathways of the mammalian suprachiasmatic nucleus: Coding circadian time by transmitter selection and specific targeting. Cell and Tissue Research 2002; 309: 109–118
  • Kanno Y, Otsuka S, Hiromasa T, Nakahama T, Inouye Y. Diurnal difference in CAR mRNA expression. Nuclear Receptor 2004; 2: 6
  • Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer S, Willson TM, Edwards PA. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. Journal of Biology and Chemistry 2002; 277: 2908–2915
  • Khedhaier A, Ben Attia M, Gadacha W, Sani M, Bouzouita K, Chouchane L, Mechkouri M, Reinberg A, Boughattas NA. Circadian rhythms in toxic effects of the serotonin antagonist ondansetron in mice. Chronobiology International 2003; 20: 1103–1116
  • Kita Y, Shiozawa M, Jin W, Majewski RR, Besharse JC, Greene AS, Jacob HJ. Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 2002; 12: 55–65
  • Knight BL, Hebbachi A, Hauton D, Brown AM, Wiggins D, Patel DD, Gibbons GF. A role for PPARalpha in the control of SREBP activity and lipid synthesis in the liver. Biochemistry Journal 2005; 389: 413–421
  • Knutsson A. Health disorders of shift workers. Occupational Medicine (London) 2003; 53: 103–108
  • Kornmann B, Preitner N, Rifat D, Fleury-Olela F, Schibler U. Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Research 2001; 29: e51
  • Lavery DJ, Lopez-Molina L, Margueron R, Fleury-Olela F, Conquet F, Schibler U, Bonfils C. Circadian expression of the steroid 15 alpha -hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Molecular Cell Biology 1999; 19: 6488–6499
  • Lee TM, Hummer DL, Jechura TJ, Mahoney MM. Pubertal development of sex differences in circadian function: An animal model. Annals of the New York Academy of Sciences 2004; 1021: 262–275
  • Lemberger T, Saladin R, Vázquez M, Assimacopoulos F, Staels B, Desvergne B, Wahli W, Auwerx J. Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. Journal of Biology and Chemistry 1996; 271: 1764–1769
  • Lemberger T, Staels B, Saladin R, Desvergne B, Auwerx J, Wahli W. Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids. Journal of Biology and Chemistry 1994; 269: 24527–24530
  • Lemmer B. The clinical relevance of chronopharmacology in therapeutics. Pharmacological Research 1996; 33: 107–115
  • Lis CG, Grutsch JF, Wood P, You M, Rich I, Hrushesky WJM. Circadian timing in cancer treatment: The biological foundation for an integrative approach. Integrated Cancer Therapy 2003; 2: 105–111
  • Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA. Nuclear pregnane X receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Molecular Pharmacology 2002; 62: 638–646
  • Magnus G, Cavallini M, Halberg F, Cornelissen G, Sutherland DE, Najarian JA, Hrushesky WJ. Circadian toxicology of cyclosporin. Toxicology and Applied Pharmacology 1985; 77: 181–185
  • Martin V, Sainz RM, Mayo JC, Antolin I, Herrera F, Rodriguez C. Daily rhythm of gene expression in rat superoxide dismutases. Endocrinology Research 2003; 29: 83–95
  • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. Control mechanism of the circadian clock for timing of cell division in vivo. Science 2003; 302: 255–259
  • Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES. Night work and breast cancer risk: A systematic review and meta-analysis. European Journal of Cancer 2005; 41: 2023–2032
  • Mendoza J, Graff C, Dardente H, Pevet P, Challe, E. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. Journal of Neuroscience 2005; 25: 1514–1522
  • Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacology Review 2003; 55: 425–461
  • Moe KE. Reproductive hormones, aging, and sleep. Seminars in Reproduction Endocrinology 1999; 17: 339–348
  • Morgan KT, Jayyosi Z, Hower MA, Pino MV, Connolly TM, Kotlenga K, Lin J, Wang M, Schmidts HL, Bonnefoi MS, Elston TC, Boorman GA. The hepatic transcriptome as a window on whole-body physiology and pathophysiology. Toxicology and Pathology 2005; 33: 136–145
  • Mormont M-C, Levi F. Cancer chronotherapy: Principles, applications, and perspectives. Cancer 2003; 97: 155–169
  • Nakamura TJ, Moriya T, Inoue S, Shimazoe T, Watanabe S, Ebihara S, Shinohara K. Estrogen differentially regulates expression of Per1 and Per2 genes between central and peripheral clocks and between reproductive and nonreproductive issues in female rats. Journal of Neuroscience Research 2005; 82: 622–630
  • Ohmori M, Fujimura A. ACE inhibitors and chronotherapy. Clinial Experiments in Hypertension 2005; 27: 179–185
  • Oishi K, Amagai N, Shirai H, Kadota K, Ohkura N, Ishida N. Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Research 2005a; 12: 191–202
  • Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi GI, Ohkura N, Azama T, Mesaki M, Yukimasa S, et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. Journal of Biology and Chemistry 2003; 278: 41519–41527
  • Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochemistry Journal 2005b; 386: 575–581
  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002; 109: 307–320
  • Pascussi J-M, Gerbal-Chaloin S, Fabre J-M, Maurel P, Vilarem M-J. Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: Consequences on cytochrome P450 gene regulation. Molecular Pharmacology 2000; 58: 1441–1450
  • Reddy AB, Wong GKY, O'Neill J, Maywood ES, Hastings MH. Circadian clocks: Neural and peripheral pacemakers that impact upon the cell division cycle. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2005; 574: 76–91
  • Ren S, Marques D, Redford K, Hylemon PB, Gil G, Vlahcevic ZR, Pandak WM. Regulation of oxysterol 7 α-hydroxylase (CYP7B1) in the rat. Metabolism 2003; 52: 636–642
  • Rensing L, Goedeke K. Circadian rhythm and cell cycle: Possible entraining mechanisms. Chronobiologia 1976; 3: 853–865
  • Richardson VM, Santostefano MJ, Birnbaum LS. Daily cycle of bHLH-PAS proteins, Ah receptor and Arnt, in multiple tissues of female Sprague–Dawley rats. Biochemical and Biophysical Research Communications 1998; 252: 225–231
  • Sangoram AM, Saez L, Antoch MP, Gekakis N, Staknis D, Whiteley A, Fruechte EM, Vitaterna MH, Shimomura K, King DP. Mammalian circadian autoregulatory loop: A timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 1998; 21: 1101–1113
  • Schibler U, Sassone-Corsi P. A web of circadian pacemakers. Cell 2002; 111: 919–922
  • Shaw P, Adesnik M, Weiss M, Corcos L. The phenobarbital-induced transcriptional activation of cytochrome P-450 genes is blocked by the glucocorticoid-progesterone antagonist RU486. Molecular Pharmacology 1993; 44: 775–783
  • Stehle JH, Von Gall C, Korf H-W. Melatonin: A clock-output, a clock-input. Journal of Neuroendocrinology 2003; 15: 383–389
  • Stokkan K-A, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science 2001; 291: 490–493
  • Storch K-F, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. Extensive and divergent circadian gene expression in liver and heart. Nature 2002; 417: 78–83
  • Storms WW. Pharmacologic approaches to daytime and nighttime symptoms of allergic rhinitis. Journal of Allergy and Clinical Immunology 2004; 114: S146–S153
  • Su T, Ding X. Regulation of the cytochrome P450 2A genes. Toxicology and Applied Pharmacology 2004; 199: 285–294
  • Sugatani J, Kojima H, Ueda A, Kakizaki S, Yoshinari K, Gong Q-H, Owens IS, Negishi M, Sueyoshi T. The phenobarbital response enhancer module in the human bilirubin UDP-glucuronosyltransferase UGT1A1 gene and regulation by the nuclear receptor CAR. Hepatology 2001; 33: 1232–1238
  • Tomita S, Sinal CJ, Yim SH, Gonzalez FJ. Conditional disruption of the aryl hydrocarbon receptor nuclear translocator (Arnt) gene leads to loss of target gene induction by the aryl hydrocarbon receptor and hypoxia-inducible factor 1α. Molecular Endocrinology 2000; 14: 1674–1681
  • Tosini G, Chaurasia SS, Iuvone PM. Regulation of arylalkylamine N-acetyltransferase (AANAT) in the retina. Chronobiology International 2006; 23: 381–391
  • Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Afshari CA, Lehmann JM, Negishi M. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Molecular Pharmacology 2002; 61: 1–6
  • Ueda H, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nature Genetics 2005; 37: 187–192
  • Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A. Coupling of human circadian and cell cycles by the timeless protein. Molecular Cell Biology 2005; 25: 3109–3116
  • Uz T, Qu T, Sugaya K, Manev H. Neuronal expression of arylalkylamine N-acetyltransferase (AANAT) mRNA in the rat brain. Neuroscience Research 2002; 42: 309–316
  • Wei P, Zhang J, Egan-Hafley M, Liang S, Moore DD. The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. 2000; 407: 920–923
  • Wright M, Wang X, Pimenta M, Ribeiro V, Paine A, Lechner M. Glucocorticoid receptor-independent transcriptional induction of cytochrome P450 3A1 by metyrapone and its potentiation by glucocorticoid. Molecular Pharmacology 1996; 50: 856–863
  • Xie W, Yeuh M-F, Radominska-Pandya A, Saini SPS, Negishi Y, Bottroff BS, Cabrera GY, Tukey RH, Evans RM. Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proceedings of the National Academy of Sciences, USA 2003; 100: 4150–4155
  • Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Archives of Pharmacology Research 2005; 28: 249–268
  • Yamamoto H, Imai K, Takamatsu Y, Kamegaya E, Kishida M, Hagino Y, Hara Y, Shimada K, Yamamoto T, Sora I, Koga H, Ikeda K. Methamphetamine modulation of gene expression in the brain: Analysis using customized cDNA microarray system with the mouse homologues of KIAA genes. Brain Research and Molecular Brain Research 2005; 137: 40–46
  • Yeh KT, Yang MY, Liu TC, Chen JC, Chan WL, Lin SF, Chang JG. Abnormal expression of period 1 (PER1) in endometrial carcinoma. Journal of Pathology 2005; 206: 111–120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.