394
Views
103
CrossRef citations to date
0
Altmetric
Research Article

Physiology, structure, and regulation of the cloned organic anion transporters

, &
Pages 889-935 | Received 10 Dec 2007, Accepted 17 Jan 2008, Published online: 22 Sep 2008

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Iwata S, Kaback HR. The lactose permease of Escherichia coli: Overall structure, the sugar-binding site and the alternating access model for transport. Federation of European Biochemical Societies Letters 2003a; 555: 96–101
  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science 2003b; 301(5633)610–615
  • Ait Slimane T, Hoekstra D. Sphingolipid trafficking and protein sorting in epithelial cells. Federation of European Biochemical Societies Letters 2002; 529: 54–59
  • Anzai N, Jutabha P, Enomoto A, Yokoyama H, Nonoguchi H, Hirata T, Shiraya K, He X, Cha SH, Takeda M, et al. Functional characterization of rat organic anion transporter 5 (Slc22a19) at the apical membrane of renal proximal tubules. Journal of Pharmacology and Experimental Therapeutics 2005; 315: 534–544
  • Anzai N, Kanai Y, Endou H. Organic anion transporter family: Current knowledge. Journal of Pharmacological Sciences 2006; 100: 411–426
  • Anzai N, Kanai Y, Endou H. New insights into renal transport of urate. Current Opinion in Rheumatology 2007; 19: 151–157
  • Anzai N, Miyazaki H, Noshiro R, Khamdang S, Chairoungdua A, Shin HJ, Enomoto A, Sakamoto S, Hirata T, Tomita K, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. Journal of Biological Chemistry 2004; 279: 45942–45950
  • Apiwattanakul N, Sekine T, Chairoungdua A, Kanai Y, Nakajima N, Sophasan S, Endou H. Transport properties of nonsteroidal anti-inflammatory drugs by organic anion transporter 1 expressed in Xenopus laevis oocytes. Molecular Pharmacology 1999; 55: 847–854
  • Asif AR, Steffgen J, Metten M, Grunewald RW, Muller GA, Bahn A, Burckhardt G, Hagos Y. Presence of organic anion transporters 3 (OAT3) and 4 (OAT4) in human adrenocortical cells. Pflügers Archiv European Journal of Physiology 2005; 450: 88–95
  • Aslamkhan AG, Han YH, Yang XP, Zalups RK, Pritchard JB. Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin–Darby canine kidney cells. Molecular Pharmacology 2003; 63: 590–596
  • Aslamkhan AG, Thompson DM, Perry JL, Bleasby K, Wolff NA, Barros S, Miller DS, Pritchard JB. The flounder organic anion transporter fOat has sequence, function, and substrate specificity similarity to both mammalian Oat1 and Oat3. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 2006; 291: R1773–R1780
  • Astorga BO, Pelis RM, Wunz TM, Perry JA, Pritchard JR, Wright SH. Molecular basis for the differential sensitivity of OCT2 and OAT1 toward Hg2+. Journal of the Federation of American Societies for Experimental Biology 2007; 21(6)A908
  • Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Tojo A, Cha SH, Sekine T, Sakthisekaran D, Endou H. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochimica et Biophysica Acta: Molecular Cell Research 2002a; 1590: 64–75
  • Babu E, Takeda M, Narikawa S, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Sakthisekaran D, Endou H. Human organic anion transporters mediate the transport of tetracycline. Japanese Journal of Pharmacology 2002b; 88: 69–76
  • Bahn A, Knabe M, Hagos Y, Rodiger M, Godehardt S, Graber-Neufeld DS, Evans KK, Burckhardt G, Wright SH. Interaction of the metal chelator 2,3-dimercapto-1-propanesulfonate with the rabbit multispecific organic anion transporter 1 (rbOAT1). Molecular Pharmacology 2002; 62: 1128–1136
  • Bahn A, Ljubojevic M, Lorenz H, Schultz C, Ghebremedhin E, Ugele B, Sabolic I, Burckhardt G, Hagos Y. Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites. American Journal of Physiology: Cell Physiology 2005; 289: C1075–C1084
  • Bahn A, Prawitt D, Buttler D, Reid G, Enklaar T, Wolff NA, Ebbinghaus C, Hillemann A, Schulten HJ, Gunawan B, et al. Genomic structure and in vivo expression of the human organic anion transporter 1 (hOAT1) gene. Biochemical and Biophysical Research Communications 2000; 275: 623–630
  • Bakhiya A, Bahn A, Burckhardt G, Wolff N. Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cellular Physiology and Biochemistry 2003; 13: 249–256
  • Bakhiya N, Batke M, Laake J, Monien BH, Frank H, Seidel A, Engst W, Glatt H. Directing role of organic anion transporters in the excretion of mercapturic acids of alkylated polycyclic aromatic hydrocarbons. Drug Metabolism and Disposition 2007; 35: 1824–1831
  • Berger V, Gabriel AF, Sergent T, Trouet A, Larondelle Y, Schneider YJ. Interaction of ochratoxin A with human intestinal Caco-2 cells: Possible implication of a multidrug resistance-associated protein (MRP2). Toxicology Letters 2003; 140–141: 465–476
  • Berkhin EB, Humphreys MH. Regulation of renal tubular secretion of organic compounds. Kidney International 2001; 59: 17–30
  • Bhatnagar V, Xu G, Hamilton BA, Truong DM, Eraly SA, Wu W, Nigam SK. Analyses of 5′ regulatory region polymorphisms in human SLC22A6 (OAT1) and SLC22A8 (OAT3). Journal of Human Genetics 2006; 51: 575–580
  • Bleasby K, Castle JC, Roberts CJ, Cheng C, Bailey WJ, Sina JF, Kulkarni AV, Hafey MJ, Evers R, Johnson JM, et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: A resource for investigations into drug disposition. Xenobiotica 2006; 36: 963–988
  • Bleasby K, Hall LA, Perry JL, Mohrenweiser HW, Pritchard JB. Functional consequences of single nucleotide polymorphisms in the human organic anion transporter hOAT1 (SLC22A6). Journal of Pharmacology and Experimental Therapeutics 2005; 314: 923–931
  • Bow DA, Perry JL, Simon JD, Pritchard JB. The impact of plasma protein binding on the renal transport of organic anions. Journal of Pharmacology and Experimental Therapeutics 2006; 316: 349–355
  • Brady KP, Dushkin H, Fornzler D, Koike T, Magner F, Her H, Gullans S, Segre GV, Green RM, Beier DR. A novel putative transporter maps to the osteosclerosis (oc) mutation and is not expressed in the oc mutant mouse. Genomics 1999; 56: 254–261
  • Buist SC, Cherrington NJ, Choudhuri S, Hartley DP, Klaassen CD. Gender-specific and developmental influences on the expression of rat organic anion transporters. Journal of Pharmacology and Experimental Therapeutics 2002; 301: 145–151
  • Burckhardt BC, Burckhardt G. Transport of organic anions across the basolateral membrane of proximal tubule cells. Reviews of Physiology, Biochemistry and Pharmacology 2003; 146: 95–158
  • Burckhardt G, Bahn A, Wolff NA. Molecular physiology of renal p-aminohippurate secretion. News in Physiological Sciences 2001; 16: 114–118
  • Burckhardt G, Wolff NA. Structure of renal organic anion and cation transporters. American Journal of Physiology: Renal Physiology 2000; 278: F853–F866
  • Capasso G, Jaeger P, Robertson WG, Unwin RJ. Uric acid and the kidney: Urate transport, stone disease and progressive renal failure. Current Pharmaceutical Design 2005; 11: 4153–4159
  • Cerrutti JA, Brandoni A, Quaglia NB, Torres AM. Sex differences in p-aminohippuric acid transport in rat kidney: Role of membrane fluidity and expression of OAT1. Molecular and Cellular Biochemistry 2002a; 233: 175–179
  • Cerrutti JA, Quaglia NB, Brandoni A, Torres AM. Effects of gender on the pharmacokinetics of drugs secreted by the renal organic anions transport systems in the rat. Pharmacological Research 2002b; 45: 107–112
  • Cerrutti JA, Quaglia NB, Torres AM. Characterization of the mechanisms involved in the gender differences in p-aminohippurate renal elimination in rats. Canadian Journal of Physiology and Pharmacology 2001; 79: 805–813
  • Cha SH, Sekine T, Fukushima JI, Kanai Y, Kobayashi Y, Goya T, Endou H. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Molecular Pharmacology 2001; 59: 1277–1286
  • Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, Sugiyama Y, Kanai Y, Endou H. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. Journal of Biological Chemistry 2000; 275: 4507–4512
  • Chakravarti A. To a future of genetic medicine. Nature 2001; 409(6822)822–823
  • Cheong HI, Kang JH, Lee JH, Ha IS, Kim S, Komoda F, Sekine T, Igarashi T, Choi Y. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatric Nephrology 2005; 20: 886–890
  • Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. International Journal of Toxicology 2006; 25: 231–259
  • Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Molecular Pharmacology 1999; 56: 570–580
  • Cross RJ, Taggart JV. Renal tubular transport: Accumulation of p-aminohippurate by rabbit kidney slices. American Journal of Physiology 1950; 161: 181–190
  • Cui Y, Walter B. Influence of albumin binding on the substrate transport mediated by human hepatocyte transporters OATP2 and OATP8. Journal of Gastroenterology 2003; 38: 60–68
  • Dantzler WH. Renal organic anion transport: A comparative and cellular perspective. Biochimica et Biophysica Acta: Biomembranes 2002; 1566: 169–181
  • Dantzler WH, Wright SH. The molecular and cellular physiology of basolateral organic anion transport in mammalian renal tubules. Biochimica et Biophysica Acta: Biomembranes 2003; 1618: 185–193
  • Dresser MJ, Leabman MK, Giacomini KM. Transporters involved in the elimination of drugs in the kidney: Organic anion transporters and organic cation transporters. Journal of Pharmaceutical Sciences 2001; 90: 397–421
  • Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R, Takeda M, Kanai Y, Sophasan S, Endou H. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. Journal of Pharmaceutical Sciences 2004; 94: 297–304
  • Enomoto A, Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clinical and Experimental Nephrology 2005; 9: 195–205
  • Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002a; 417(6887)447–452
  • Enomoto A, Takeda M, Shimoda M, Narikawa S, Kobayashi Y, Kobayashi Y, Yamamoto T, Sekine T, Cha SH, Niwa T, et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. Journal of Pharmacology and Experimental Therapeutics 2002b; 301: 797–802
  • Enomoto A, Takeda M, Taki K, Takayama F, Noshiro R, Niwa T, Endou H. Interactions of human organic anion as well as cation transporters with indoxyl sulfate. European Journal of Pharmacology 2003; 466: 13–20
  • Eraly SA, Hamilton BA, Nigam SK. Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochemical and Biophysical Research Communications 2003; 300: 333–342
  • Eraly SA, Vallon V, Vaughn DA, Gangoiti JA, Richter K, Nagle M, Monte JC, Rieg T, Truong DM, Long JM, et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. Journal of Biological Chemistry 2006; 281: 5072–5083
  • Erdman AR, Mangravite LM, Urban TJ, Lagpacan LL, Castro RA, de la Cruz M, Chan W, Huang CC, Johns SJ, Kawamoto M, et al. The human organic anion transporter 3 (OAT3; SLC22A8): Genetic variation and functional genomics. American Journal of Physiology: Renal Physiology 2006; 290: F905–F912
  • Feng B, Dresser MJ, Shu Y, Johns SJ, Giacomini KM. Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. Biochemistry 2001; 40: 5511–5520
  • Feng B, Shu Y, Giacomini KM. Role of aromatic transmembrane residues of the organic anion transporter, rOAT3, in substrate recognition. Biochemistry 2002; 41: 8941–8947
  • Fielding CJ, Fielding PE. Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochimica et Biophysica Acta: Biomembranes 2003; 1610: 219–228
  • Fritzsch G, Rumrich G, Ullrich KJ. Anion transport through the contraluminal cell membrane of renal proximal tubule. The influence of hydrophobicity and molecular charge distribution on the inhibitory activity of organic anions. Biochimica et Biophysica Acta 1989; 978: 249–256
  • Fujita T, Brown C, Carlson EJ, Taylor T, de la Cruz M, Johns SJ, Stryke D, Kawamoto M, Fujita K, Castro R, et al. Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1). Pharmacogenetics and Genomics 2005; 15: 201–209
  • Gekle M, Mildenberger S, Sauvant C, Bednarczyk D, Wright SH, Dantzler WH. Inhibition of initial transport rate of basolateral organic anion carrier in renal PT by BK and phenylephrine. American Journal of Physiology: Renal Physiology 1999; 277(2 Pt 2)F251–F256
  • Geng L, Kuze K, Satlin L, Healy D, Henderson S, Burrow C, Wilson PGY. Localization and developmental expression of the organic anion transporter protein mOAT. Paper presented at the American Society of Nephrology, 32nd Annual Meeting. 1999
  • George RL, Wu X, Huang W, Fei YJ, Leibach FH, Ganapathy V. Molecular cloning and functional characterization of a polyspecific organic anion transporter from Caenorhabditis elegans. Journal of Pharmacology and Experimental Therapeutics 1999; 291: 596–603
  • Graessler J, Graessler A, Unger S, Kopprasch S, Tausche AK, Kuhlisch E, Schroeder HE. Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis and Rheumatism 2006; 54: 292–300
  • Groves CE, Suhre WB, Cherrington NJ, Wright SH. Sex differences in the mRNA, protein, and functional expression of organic anion transporter (Oat) 1, Oat3, and organic cation transporter (Oct) 2 in rabbit renal proximal tubules. Journal of Pharmacology and Experimental Therapeutics 2006; 316: 743–752
  • Grundemann D, Gorboulev V, Gambaryan S, Veyhi M, Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature 1994; 372: 549–552
  • Hagenbuch B, Gao B, Meier PJ. Transport of xenobiotics across the blood–brain barrier. News in Physiological Sciences 2002; 17: 231–234
  • Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides. Biochimica et Biophysica Acta: Biomembranes 2003; 1609: 1–18
  • Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: Phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Archiv European Journal of Physiology 2004; 447: 653–665
  • Hagos Y, Bahn A, Asif AR, Krick W, Sendler M, Burckhardt G. Cloning of the pig renal organic anion transporter 1 (pOAT1). Biochimie 2002; 84: 1221–1224
  • Hagos Y, Braun IM, Krick W, Burckhardt G, Bahn A. Functional expression of pig renal organic anion transporter 3 (pOAT3). Biochimie 2005; 87: 421–424
  • Hasannejad H, Takeda M, Taki K, Shin HJ, Babu E, Jutabha P, Khamdang S, Aleboyeh M, Onozato ML, Tojo A, et al. Interactions of human organic anion transporters with diuretics. Journal of Pharmacology and Experimental Therapeutics 2004; 308: 1021–1029
  • Hasegawa M, Kusuhara H, Sugiyama D, Ito K, Ueda S, Endou H, Sugiyama Y. Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. Journal of Pharmacology and Experimental Therapeutics 2002; 300: 746–753
  • Hashimoto T, Narikawa S, Huang XL, Minematsu T, Usui T, Kamimura H, Endou H. Characterization of the renal tubular transport of zonampanel, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, by human organic anion transporters. Drug Metabolism and Disposition 2004; 32: 1096–1102
  • Hediger MA, Johnson RJ, Miyazaki H, Endou H. Molecular physiology of urate transport. Physiology 2005; 20: 125–133
  • Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metabolism and Disposition 2007; 35: 1333–1340
  • Hirai T, Chida K. Protein kinase C zeta (PKC zeta): Activation mechanisms and cellular functions. Journal of Biochemistry 2003; 133: 395–395
  • Hirai T, Heymann JAW, Shi D, Subramaniam S. Paper presented at the Biophysical Society 48th Annual Meeting. Comparative structural analysis of the ‘symmetric’, substrate-bound state of the oxalate transporter OxlT with the ‘cytoplasmically-open’ state of the MFS transporters GlpT and LacY. 2004; 3173
  • Hong M, Tanaka K, Pan Z, Ma J, You G. Determination of the external loops and the cellular orientation of the N- and the C-termini of the human organic anion transporter hOAT1. Biochemical Journal 2007a; 401: 515–520
  • Hong M, Zhou F, Lee K, You G. The putative transmembrane segment 7 of human organic anion transporter hOAT1 dictates transporter substrate binding and stability. Journal of Pharmacology and Experimental Therapeutics 2007b; 320: 1209–1215
  • Hong M, Zhou F, You G. Critical amino acid residues in transmembrane domain 1 of the human organic anion transporter hOAT1. Journal of Biological Chemistry 2004; 279: 31478–31482
  • Hosoyamada M, Ichida K, Enomoto A, Hosoya T, Endou H. Function and localization of urate transporter 1 in mouse kidney. Journal of the American Society of Nephrology 2004; 15: 261–268
  • Hosoyamada M, Sekine T, Kanai Y, Endou H. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. American Journal of Physiology: Renal Physiology 1999; 276: F122–F128
  • Huang YF, Lemieux MJ, Song JM, Auer M, Wang DN. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 2003; 301(5633)616–620
  • Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, Hosoya T. Clinical and molecular analysis of patients with renal hypouricemia in Japan — influence of URAT1 gene on urinary urate excretion. Journal of the American Society of Nephrology 2004; 15: 164–173
  • Ichida K, Hosoyamada M, Kimura H, Takeda M, Utsunomiya Y, Hosoya T, Endou H. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney International 2003; 63: 143–155
  • Iida A, Saito S, Sekine A, Mishima C, Kondo K, Kitamura Y, Harigae S, Osawa S, Nakamura Y. Catalog of 258 single-nucleotide polymorphisms (SNPs) in genes encoding three organic anion transporters, three organic anion-transporting polypeptides, and three NADH:ubiquinone oxidoreductase flavoproteins. Journal of Human Genetics 2001; 46: 668–683
  • Islinger F, Gekle M, Wright SH. Interaction of 2,3-dimercapto-1-propane sulfonate with the human organic anion transporter hOAT1. Journal of Pharmacology and Experimental Therapeutics 2001; 299: 741–747
  • Iwai M, Suzuki H, Ieiri I, Otsubo K, Sugiyama Y. Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C). Pharmacogenetics 2004; 14: 749–757
  • Jacobsson JA, Haitina T, Lindblom J, Fredriksson R. Identification of six putative human transporters with structural similarity to the drug transporter SLC22 family. Genomics 2007; 90: 595–609
  • Jariyawat S, Sekine T, Takeda M, Apiwattanakul N, Kanai Y, Sophasan S, Endou H. The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1. Journal of Pharmacology and Experimental Therapeutics 1999; 290: 672–677
  • Jenny M, Wrulich OA, Schwaiger W, Ueberall F. Relevance of atypical protein kinase C isotypes to the drug discovery process. Chembiochemistry 2005; 6: 491–499
  • Kaler G, Truong DM, Khandelwal A, Nagle M, Eraly SA, Swaan PW, Nigam SK. Structural variation governs substrate specificity for organic anion transporters (oat) homologs: Potential remote sensing by oat family members. Journal of Biology and Chemistry 2007; 282: 23841–23853
  • Kaler G, Truong DM, Sweeney DE, Logan DW, Nagle M, Wu W, Eraly SA, Nigam SK. Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochemical and Biophysical Research Communications 2006; 351: 872–876
  • Khamdang S, Takeda M, Noshiro R, Narikawa S, Enomoto A, Anzai N, Piyachaturawat P, Endou H. Interactions of human organic anion transporters and human organic cation transporters with nonsteroidal anti-inflammatory drugs. Journal of Pharmacology and Experimental Therapeutics 2002; 303: 534–539
  • Kikuchi R, Kusuhara H, Hattori N, Kim I, Shiota K, Gonzalez FJ, Sugiyama Y. Regulation of tissue-specific expression of the human and mouse urate transporter 1 gene by hepatocyte nuclear factor 1 alpha/beta and DNA methylation. Molecular Pharmacology 2007; 72: 1619–1625
  • Kikuchi R, Kusuhara H, Hattori N, Shiota K, Kim I, Gonzalez FJ, Sugiyama Y. Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1alpha/beta and DNA methylation. Molecular Pharmacology 2006; 70: 887–896
  • Kikuchi R, Kusuhara H, Sugiyama D, Sugiyama Y. Contribution of organic anion transporter 3 (Slc22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood–brain barrier. Journal of Pharmacology and Experimental Therapeutics 2003; 306: 51–58
  • Kimura H, Takeda M, Narikawa S, Enomoto A, Ichida K, Endou H. Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. Journal of Pharmacology and Experimental Therapeutics 2002; 301: 293–298
  • Klaassen CD, Slitt AL. Regulation of hepatic transporters by xenobiotic receptors. Current Drug Metabolism 2005; 6: 309–328
  • Kobayashi Y, Ohbayashi M, Kohyama N, Yamamoto T. Mouse organic anion transporter 2 and 3 (mOAT2/3[Slc22a7/8]) mediates the renal transport of bumetanide. European Journal of Pharmacology 2005a; 524: 44–48
  • Kobayashi Y, Ohshiro N, Sakai R, Ohbayashi M, Kohyama N, Yamamoto T. Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). Journal of Pharmacy and Pharmacology 2005b; 57: 573–578
  • Kobayashi Y, Ohshiro N, Shibusawa A, Sasaki T, Tokuyama S, Sekine T, Endou H. Isolation, characterization and differential gene expression of multispecific organic anion transporter 2 in mice. Molecular Pharmacology 2002; 62: 7–14
  • Kobayashi Y, Ohshiro N, Tsuchiya A, Kohyama N, Ohbayashi M, Yamamoto T. Renal transport of organic compounds mediated by mouse organic anion transporter 3 (moat3): Further substrate specificity of moat3. Drug Metabolism and Disposition 2004; 32: 479–483
  • Koepsell H, Endou H. The SLC22 drug transporter family. Pflügers Archiv European Journal of Physiology 2004; 447: 666–676
  • Komoda F, Sekine T, Inatomi J, Enomoto A, Endou H, Ota T, Matsuyama T, Ogata T, Ikeda M, Awazu M, et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatric Nephrology 2004; 19: 728–733
  • Kusuhara H, Sekine T, Utsunomiya-Tate N, Tsuda M, Kojima R, Cha SH, Sugiyama Y, Kanai Y, Endou H. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. Journal of Biological Chemistry 1999; 274: 13675–13680
  • Kuze K, Graves P, Leahy A, Wilson P, Stuhlmann H, You G. Heterologous expression and functional characterization of a mouse renal organic anion transporter in mammalian cells. Journal of Biological Chemistry 1999; 274: 1519–1524
  • Kwak JO, Kim HW, Oh KJ, Kim DS, Han KO, Cha SH. Co-localization and interaction of organic anion transporter 1 with caveolin-2 in rat kidney. Experimental and Molecular Medicine 2005a; 37: 204–212
  • Kwak JO, Kim HW, Oh KJ, Ko CB, Park H, Cha SH. Characterization of mouse organic anion transporter 5 as a renal steroid sulfate transporter. Journal of Steroid Biochemistry and Molecular Biology 2005b; 97: 369–375
  • Kwak JO, Kim HW, Song JH, Kim MJ, Park HS, Hyun DK, Kim DS, Cha SH. Evidence for rat organic anion transporter 3 association with caveolin-1 in rat kidney. International Union of Biochemistry and Molecular Biology Life 2005c; 57: 109–117
  • Lee SJ, Usmani KA, Chanas B, Ghanayem B, Xi T, Hodgson E, Mohrenweiser HW, Goldstein JA. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics 2003a; 13: 461–472
  • Lee W, Ingram AD, Leake BF, Kim RB. Identification of nonsynonomous polymorphisms of human organic anion transporter 1 (OAT1) among African-, European- and Chinese-American subjects. Drug Metabolism Reviews 2003b; 35: 75
  • Ljubojevic M, Balen D, Breljak D, Kusan M, Anzai N, Bahn A, Burckhardt G, Sabolic I. Renal expression of organic anion transporter OAT2 in rats and mice is regulated by sex hormones. American Journal of Physiology: Renal Physiology 2007; 292: F361–F372
  • Ljubojevic M, Herak-Kramberger CM, Hagos Y, Bahn A, Endou H, Burckhardt G, Sabolic I. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. American Journal of Physiology: Renal Physiology 2004; 287: F124–F138
  • Lopez-Nieto CE, You G, Bush KT, Barros EJ, Beier DR, Nigam SK. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. Journal of Biological Chemistry 1997; 272: 6471–6478
  • Lu R, Chan BS, Schuster VL. Cloning of the human kidney PAH transporter: Narrow substrate specificity and regulation by protein kinase c. American Journal of Physiology: Renal Physiology 1999; 276: F295–F303
  • Maesaka JK, Fishbane S. Regulation of renal urate excretion: A critical review. American Journal of Kidney Diseases 1998; 32: 917–933
  • Marshall EKJ, Grafflin AL. The structure and function of the kidney of Lophius piscatorius. Bulletin of the Johns Hopkins Hospital 1928; 43: 205–235
  • Marshall EKJ, Grafflin AL. The function of the proximal convoluted segment of the renal tubules. Journal of Cellular and Comparative Physiology 1932; 1: 161–176
  • Marshall EKJ, Vickers JL. The mechanism of the elimination of phenolsulphonephthalein by the kidney: A proof of secretion by the convoluted tubules. Bulletin of the John Hopkins Hospital 1923; 34: 1–7
  • Marzolini C, Tirona RG, Kim RB. Pharmacogenomics of the OATP and OAT families. Pharmacogenomics 2004; 5: 273–282
  • Miller D, Lowes S, Pritchard JB. The molecular basis of xenobiotic transport and metabolism in the choroid plexus. The blood–cerebrospinal fluid barrier, ZW Chodobski. Taylor & Francis, New York, NY 2005; 147–173
  • Miller DS. Confocal imaging of xenobiotic transport across the blood–brain barrier. Journal of Experimental Zoology Part A: Comparative experimental biology 2003; 300: 84–90
  • Miyazaki H, Anzai N, Ekaratanawong S, Sakata T, Shin HJ, Jutabha P, Hirata T, He X, Nonoguchi H, Tomita K, et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. Journal of the American Society of Nephrology 2005; 16: 3498–3506
  • Monte JC, Nagle MA, Eraly SA, Nigam SK. Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochemical and Biophysical Research Communications 2004; 323: 429–436
  • Mori K, Ogawa Y, Ebihara K, Aoki T, Tamura N, Sugawara A, Kuwahara T, Ozaki S, Mukoyama M, Tashiro K, et al. Kidney-specific expression of a novel mouse organic cation transporter-like protein. Federation of European Biochemical Societies Letters 1997; 417: 371–374
  • Morita N, Kusuhara H, Sekine T, Endou H, Sugiyama Y. Functional characterization of rat organic anion transporter 2 in LLC-PK1 cells. Journal of Pharmacology and Experimental Therapeutics 2001; 298: 1179–1184
  • Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, Takane H, Irie S, Kusuhara H, Urasaki Y, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: Consequences for pravastatin pharmacokinetics. Clinical Pharmacology and Therapeutics 2003; 73: 554–565
  • Ogasawara K, Terada T, Asaka J, Katsura T, Inui K. Human organic anion transporter 3 gene is regulated constitutively and inducibly via a cAMP-response element. Journal of Pharmacology and Experimental Therapeutics 2006; 319: 317–322
  • Ogasawara K, Terada T, Asaka J, Katsura T, Inui K. Hepatocyte nuclear factor-4{alpha} regulates the human organic anion transporter 1 gene in the kidney. American Journal of Physiology: Renal Physiology 2007; 292: F1819–F1826
  • Ohtsuki S. New aspects of the blood–brain barrier transporters; its physiological roles in the central nervous system. Biological and Pharmaceutical Bulletin 2004; 27: 1489–1496
  • Ohtsuki S, Kikkawa T, Mori S, Hori S, Takanaga H, Otagiri M, Terasaki T. Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood–brain barrier. Journal of Pharmacology and Experimental Therapeutics 2004; 309: 1273–1281
  • Pavlova A, Sakurai H, Leclercq B, Beier DR, Yu ASL, Nigam SK. Developmentally regulated expression of organic ion transporters NKT(OAT1), OCT1, NLT(OAT2), and Roct. American Journal of Physiology: Renal Physiology 2000; 278: F635–F643
  • Perry JL, Dembla-Rajpal N, Hall LA, Pritchard JB. A three-dimensional model of human organic anion transporter 1: Aromatic amino acids required for substrate transport. Journal of Biological Chemistry 2006; 281: 38071–38079
  • Perry JL, Srimaroeng C, Dembla-Rajpal N, Hall LA, Pritchard JB. Substrate specificity in a model of the human organic anion transporter 3. Journal of the Federation of American Societies for Experimental Biology 2007; 21: 758.7
  • Petrick JS, Klaassen CD. Importance of hepatic induction of constitutive androstane receptor and other transcription factors that regulate xenobiotic metabolism and transport. Drug Metabolism and Disposition 2007; 35: 1806–1815
  • Popowski K, Eloranta JJ, Saborowski M, Fried M, Meier PJ, Kullak-Ublick GA. The human organic anion transporter 2 gene is transactivated by hepatocyte nuclear factor-4{alpha} and suppressed by bile acids. Molecular Pharmacology 2005; 67: 1629–1638
  • Popp C, Gorboulev V, Muller TD, Gorbunov D, Shatskaya N, Koepsell H. Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Molecular Pharmacology 2005; 67: 1600–1611
  • Price KL, Sautin YY, Long DA, Zhang L, Miyazaki H, Mu W, Endou H, Johnson RJ. Human vascular smooth muscle cells express a urate transporter. Journal of the American Society of Nephrology 2006; 17: 1791–1795
  • Pritchard JB. Luminal and peritubular steps in renal transport of p-aminohippurate. Biochimica et Biophysica Acta: Reviews on Biomembranes 1987; 906: 295–308
  • Pritchard JB. Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles. American Journal of Physiology: Renal Physiology 1988; 255(4 Pt 2)F597–F604
  • Pritchard JB. Rat renal cortical slices demonstrate p-aminohippurate/glutarate exchange and sodium/glutarate coupled p-aminohippurate transport. Journal of Pharmacology and Experimental Therapeutics 1990; 255: 969–975
  • Pritchard JB, Miller DS. Mechanisms mediating renal secretion of organic anions and cations. Physiological Reviews 1993; 73: 765–796
  • Pritchard JB, Miller DS. Expression systems for cloned xenobiotic transporters. Toxicology and Applied Pharmacology 2005; 204: 256–262
  • Race JE, Grassl SM, Williams WJ, Holtzman EJ. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3). Biochemical and Biophysical Research Communications 1999; 255: 508–514
  • Reid G, Wolff NA, Dautzenberg FM, Burckhardt G. Cloning of a human renal p-aminohippurate transporter, hROAT1. Kidney and Blood Pressure Research 1998; 21: 233–237
  • Reyes JL, Melendez E, Alegria A, Jaramillo-Juarez F. Influence of sex differences on the renal secretion of organic anions. Endocrinology 1998; 139: 1581–1587
  • Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: Biopharmaceutical, physiological, and pathological roles. Pharmaceutical Research 2007; 24: 450–470
  • Rizwan AN, Krick W, Burckhardt G. The chloride dependence of the human organic anion transporter 1 (hOAT1) is blunted by mutation of a single amino acid. Journal of Biological Chemistry 2007; 282: 13402–13409
  • Robertson EE, Rankin GO. Human renal organic anion transporters: Characteristics and contributions to drug and drug metabolite excretion. Pharmacology and Therapeutics 2006; 109: 399–412
  • Rowntree LG, Geraghty JT. An experimental and clinical study of the functional activity of the kidneys by means of phenolsulphonephthalein. Journal of Pharmacology and Experimental Therapeutics 1909; 1: 579–661
  • Sabolic I, Asif AR, Budach WE, Wanke C, Bahn A, Burckhardt G. Gender differences in kidney function. Pflügers Archiv European Journal of Physiology 2007; 455: 397–429
  • Saji T, Kikuchi R, Kusuhara H, Kim I, Gonzalez FJ, Sugiyama Y. Transcriptional regulation of human and mouse organic anion transporter 1 by hepatocyte nuclear factor 1 {alpha}/{beta}. Journal of Pharmacology and Experimental Therapeutics 2008; 324(2)784–790
  • Sauvant C, Holzinger H, Gekle M. Short-term regulation of basolateral organic anion uptake in proximal tubular OK cells: EGF acts via MAPK, PLA(2), and COX1. Journal of the American Society of Nephrology 2002; 13: 1981–1991
  • Sauvant C, Holzinger H, Gekle M. Short-term regulation of basolateral organic anion uptake in proximal tubular opossum kidney cells: Prostaglandin E2 acts via receptor-mediated activation of protein kinase A. Journal of the American Society of Nephrology 2003; 14: 3017–3026
  • Sauvant C, Holzinger H, Gekle M. Prostaglandin E2 inhibits its own renal transport by downregulation of organic anion transporters rOAT1 and rOAT3. Journal of the American Society of Nephrology 2006; 17: 46–53
  • Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview. Advanced Drug Delivery Reviews 2003; 55: 3–29
  • Schmitt C, Burckhardt G. p-Aminohippurate/2-oxoglutarate exchange in bovine renal brush-border and basolateral membrane vesicles. Pflügers Archiv European Journal of Physiology 1993; 423: 280–290
  • Schnabolk GW, Youngblood GL, Sweet DH. Transport of estrone sulfate by the novel organic anion transporter Oat6 (Slc22a20). American Journal of Physiology: Renal Physiology 2006; 291: F314–F321
  • Sekine T, Cha SH, Tsuda M, Apiwattanakul N, Nakajima N, Kanai Y, Endou H. Identification of multispecific organic anion transporter 2 expressed predominantly in the liver. Federation of European Biochemical Societies Letters 1998; 429: 179–182
  • Sekine T, Watanabe N, Hosoyamada M, Kanai Y, Endou H. Expression cloning and characterization of a novel multispecific organic anion transporter. Journal of Biological Chemistry 1997; 272: 18526–18529
  • Shimada H, Moewes B, Burckhardt G. Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles. American Journal of Physiology: Renal Physiology 1987; 253(5 Pt 2)F795–F801
  • Shin HJ, Anzai N, Enomoto A, He X, Kim do K, Endou H, Kanai Y. Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 2007; 45: 1046–1055
  • Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. European Journal of Pharmaceutical Sciences 2006; 27: 425–446
  • Shitara Y, Sugiyama Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: Drug–drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacology and Therapeutics 2006; 112: 71–105
  • Shuprisha A, Lynch RM, Wright SH, Dantzler WH. PKC regulation of organic anion secretion in perfused S2 segments of rabbit proximal tubules. American Journal of Physiology: Renal Physiology 2000; 278: F104–F109
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387(6633)569–572
  • Simonson GD, Vincent AC, Roberg KJ, Huang Y, Iwanij V. Molecular cloning and characterization of a novel liver-specific transport protein. Journal of Cell Science 1994; 107(Pt 4)1065–1072
  • Smith HW, Goldring W, Chassis H. The measurement of the tubular excretory mass, effective blood flow, and filtration rate in the normal human kidney. Journal of Clinical Investigation 1938; 17: 263–278
  • Soodvilai S, Chatsudthipong V, Evans KK, Wright SH, Dantzler WH. Acute regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules. American Journal of Physiology: Renal Physiology 2004; 287: F1021–F1029
  • Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, Endou H, Suzuki H, Sugiyama Y. Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood–brain barrier. Journal of Pharmacology and Experimental Therapeutics 2001; 298: 316–322
  • Sun W, Wu RR, Van Poelje PD, Erion MD. Isolation of a family of organic anion transporters from human liver and kidney. Biochemical and Biophysical Research Communications 2001; 283: 417–422
  • Sweet DH. Organic anion transporter (Slc22a) family members as mediators of toxicity. Toxicology and Applied Pharmacology 2005; 204: 198–215
  • Sweet DH, Chan LM, Walden R, Yang XP, Miller DS, Pritchard JB. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. American Journal of Physiology: Renal Physiology 2003; 284: F763–F769
  • Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. Journal of Biological Chemistry 2002; 277: 26934–26943
  • Sweet DH, Miller DS, Pritchard JB. Localization of an organic anion transporter-GFP fusion construct (rROAT1-GFP) in intact proximal tubules. American Journal of Physiology: Renal Physiology 1999; 276: F864–F873
  • Sweet DH, Wolff NA, Pritchard JB. Expression cloning and characterization of ROAT1: The basolateral organic anion transporter in rat kidney. Journal of Biological Chemistry 1997; 272: 30088–30095
  • Sykes D, Sweet DH, Lowes S, Nigam SK, Pritchard JB, Miller DS. Organic anion transport in choroid plexus from wild-type and organic anion transporter 3 (Slc22a8)-null mice. American Journal of Physiology: Renal Physiology 2004; 286: F972–F978
  • Tahara H, Shono M, Kusuhara H, Kinoshita H, Fuse E, Takadate A, Otagiri M, Sugiyama Y. Molecular cloning and functional analyses of OAT1 and OAT3 from cynomolgus monkey kidney. Pharmaceutical Research 2005; 22: 647–660
  • Takeda M, Babu E, Narikawa S, Endou H. Interaction of human organic anion transporters with various cephalosporin antibiotics. European Journal of Pharmacology 2002a; 438: 137–142
  • Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M, Cha SH, Sekine T, Endou H. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. Journal of Pharmacology and Experimental Therapeutics 2002b; 302: 666–671
  • Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, Cha SH, Sekine T, Endou H. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. Journal of Pharmacology and Experimental Therapeutics 2002c; 300: 918–924
  • Takeda M, Sekine T, Endou H. Regulation by protein kinase C of organic anion transport driven by rat organic anion transporter 3 (rOAT3). Life Sciences 2000; 67: 1087–1093
  • Tanaka K, Zhou F, Kuze K, You G. Cysteine residues in the organic anion transporter mOAT1. Biochemical Journal 2004b; 380: 283–287
  • Tanaka Y, Xu W, Zhou F, You GF. Role of glycosylation in the organic anion transporter OAT1. Journal of Biological Chemistry 2004a; 279: 14961–14966
  • Taniguchi A, Urano W, Yamanaka M, Yamanaka H, Hosoyamada M, Endou H, Kamatani N. A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis and Rheumatism 2005; 52: 2576–2577
  • Thompson D, Srimaroeng C, Dallas S, Walden R, Miller D, Pritchard J. Functional characterization of human organic anion transporter 4 (hOAT4) in a Baculovirus expression system. Journal of the Federation of American Societies for Experimental Biology 2007; 21: 758. 1
  • Ugele B, St-Pierre MV, Pihusch M, Bahn A, Hantschmann P. Characterization and identification of steroid sulfate transporters of human placenta. American Journal of Physiology: Endocrinology and Metabolism 2003; 284: E390–E398
  • Ullrich KJ. Renal Transporters for organic anions and organic cations. Structural requirements for substrates. Journal of Membrane Biology 1997; 158: 95–107
  • Ullrich KJ, Rumrich G. Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. American Journal of Physiology: Renal Physiology 1988; 254: F453–F462
  • Uwai Y, Okuda M, Takami K, Hashimoto Y, Inui K. Functional characterization of the rat multispecific organic anion transporter OAT1 mediating basolateral uptake of anionic drugs in the kidney. Federation of European Biochemical Societies Letters 1998; 438: 321–324
  • Wakida N, Tuyen DG, Adachi M, Miyoshi T, Nonoguchi H, Oka T, Ueda O, Tazawa M, Kurihara S, Yoneta Y, et al. Mutations in human urate transporter 1 gene in presecretory reabsorption defect type of familial renal hypouricemia. Journal of Clinical Endocrinology and Metabolism 2005; 90: 2169–2174
  • Weiner IM. Transport of weak acids and bases. Handbook of physiology, Section 8: Renal physiology, J Orloff, RW Berliner. American Physiological Society, Washington, DC 1973; 521–554
  • Weiner IM, Blanchard KC, Mudge GH. Factors influencing renal excretion of foreign organic acids. American Journal of Physiology 1964; 207: 953–963
  • Whitley AC, Sweet DH, Walle T. The dietary polyphenol ellagic acid is a potent inhibitor of hOAT1. Drug Metabolism and Disposition 2005; 33: 1097–1100
  • Wolff NA, Grunwald B, Friedrich B, Lang F, Godehardt S, Burckhardt G. Cationic amino acids involved in dicarboxylate binding of the flounder renal organic anion transporter. Journal of the American Society of Nephrology 2001; 12: 2012–2018
  • Wolff NA, Thies K, Kuhnke N, Reid G, Friedrich B, Lang F, Burckhardt G. Protein kinase C activation downregulates human organic anion transporter 1-mediated transport through carrier internalization. Journal of the American Society of Nephrology 2003; 14: 1959–1968
  • Wolff NA, Werner A, Burkhardt S, Burckhardt G. Expression cloning and characterization of a renal organic anion transporter from winter flounder. Federation of European Biochemical Societies Letters 1997; 417: 287–291
  • Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiological Reviews 2004; 84: 987–1049
  • Xu G, Bhatnagar V, Wen G, Hamilton BA, Eraly SA, Nigam SK. Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT (RST)]. Kidney International 2005; 68: 1491–1499
  • Xu W, Tanaka K, Sun AQ, You G. Functional role of the C terminus of human organic anion transporter hOAT1. Journal of Biological Chemistry 2006; 281: 31178–31183
  • Yang XP, Bleasby K, Breen CM, Miller DS, Pritchard JB. Exploring the structure and function of the human organic anion transporter hOAT1. Journal of the Federation of American Societies for Experimental Biology 2002; 16: 390. 1
  • You G. Towards an understanding of organic anion transporters:structure–function relationships. Medicinal Research Reviews 2004; 24: 762–774
  • You G, Kuze K, Kohanski RA, Amsler K, Henderson S. Regulation of mOAT-mediated organic anion transport by okadaic acid and protein kinase C in LLC-PK(1) cells. Journal of Biological Chemistry 2000; 275: 10278–10284
  • Youngblood GL, Sweet DH. Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. American Journal of Physiology: Renal Physiology 2004; 287: F236–F244
  • Zalups RK. Molecular interactions with mercury in the kidney. Pharmacological Reviews 2000; 52: 113–143
  • Zalups RK, Ahmad S. Homocysteine and the renal epithelial transport and toxicity of inorganic mercury: Role of basolateral transporter organic anion transporter 1. Journal of the American Society of Nephrology 2004; 15: 2023–2031
  • Zalups RK, Ahmad S. Handling of cysteine S-conjugates of methylmercury in MDCK cells expressing human OAT1. Kidney International 2005; 68: 1684–1699
  • Zhang XH, Shirahatti NV, Mahadevan D, Wright SH. A conserved glutamate residue in transmembrane helix 10 influences substrate specificity of rabbit OCT2 (SLC22A2). Journal of Biological Chemistry 2005; 280: 34813–34822
  • Zhou F, Hong M, You G. Regulation of human organic anion transporter 4 by progesterone and protein kinase C in human placental BeWo cells. American Journal of Physiology: Endocrinology and Metabolism 2007; 293: E57–E61
  • Zhou F, Pan Z, Ma J, You G. Mutational analysis of histidine residues in human organic anion transporter 4 (hOAT4). Biochemical Journal 2004a; 384(Pt 1)87–92
  • Zhou F, Tanaka K, Pan Z, Ma J, You GF. The role of glycine residues in the function of human organic anion transporter 4. Molecular Pharmacology 2004b; 65: 1141–1147
  • Zhou F, Xu W, Hong M, Pan Z, Sinko PJ, Ma J, You G. The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter hOAT4. Molecular Pharmacology 2005; 67: 868–876
  • Zhou F, Xu W, Tanaka K, You G. Comparison of the interaction of human organic anion transporter hOAT4 with PDZ proteins between kidney cells and placental cells. Pharmaceutical Research 2008; 25(2)475–480
  • Zhou F, You G. Molecular insights into the structure–function relationship of organic anion transporters OATs. Pharmaceutical Research 2007; 24: 28–36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.