Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 50, 2020 - Issue 7
124
Views
2
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Expression levels of microRNAs that are potential cytochrome P450 regulators in cynomolgus macaques

ORCID Icon & ORCID Icon
Pages 747-752 | Received 26 Sep 2019, Accepted 30 Oct 2019, Published online: 11 Nov 2019

References

  • Bartel DP. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–97.
  • Bolleyn J, De Kock J, Rodrigues RM, et al. (2015). MicroRNAs as key regulators of xenobiotic biotransformation and drug response. Arch Toxicol 89:1523–41.
  • Dluzen DF, Lazarus P. (2015). MicroRNA regulation of the major drug-metabolizing enzymes and related transcription factors. Drug Metab Rev 47:320–34.
  • Glubb DM, Innocenti F. (2011). Mechanisms of genetic regulation in gene expression: examples from drug metabolizing enzymes and transporters. Wiley Interdiscip Rev Syst Biol Med 3:299–313.
  • Griffiths-Jones S, Saini HK, van Dongen S, et al. (2007). miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–58.
  • Guo H, Ingolia NT, Weissman JS, et al. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–40.
  • He Y, Chevillet JR, Liu G, et al. (2015). The effects of microRNA on the absorption, distribution, metabolism and excretion of drugs. Br J Pharmacol 172:2733–47.
  • Honkakoski P, Negishi M. (2000). Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 347:321–37.
  • Huang Z, Wang M, Liu L, et al. (2019). Transcriptional repression of CYP3A4 by increased miR-200a-3p and miR-150-5p promotes steatosis. Front Genet 10:484.
  • Ise R, Nakanishi Y, Kohara S, et al. (2012). Expression profile of hepatic genes in cynomolgus macaques bred in Cambodia, China, and Indonesia: implications for cytochrome P450 genes. Drug Metab Pharmacokinet 27:307–16.
  • Kazantseva YA, Yarushkin AA, Mostovich LA, et al. (2015). Xenosensor CAR mediates down-regulation of miR-122 and up-regulation of miR-122 targets in the liver. Toxicol Appl Pharmacol 288:26–32.
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–62.
  • Laudadio I, Manfroid I, Achouri Y, et al. (2012). A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation. Gastroenterology 142:119–29.
  • Leivonen SK, Mäkelä R, Ostling P, et al. (2009). Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene 28:3926–36.
  • Lewis BP, Shih IH, Jones-Rhoades MW, et al. (2003). Prediction of mammalian microRNA targets. Cell 115:787–98.
  • Li X, Mertens-Talcott SU, Zhang S, et al. (2010). MicroRNA-27a indirectly regulates estrogen receptor α expression and hormone responsiveness in MCF-7 breast cancer cells. Endocrinology 151:2462–73.
  • Li ZY, Xi Y, Zhu WN, et al. (2011). Positive regulation of hepatic miR-122 expression by HNF4α. J Hepatol 55:602–11.
  • Mohri T, Nakajima M, Fukami T, et al. (2010). Human CYP2E1 is regulated by miR-378. Biochem Pharmacol 79:1045–52.
  • Pan YZ, Gao W, Yu AM. (2009). MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 37:2112–7.
  • Song KH, Li T, Owsley E, et al. (2010). A putative role of micro RNA in regulation of cholesterol 7 α-hydroxylase expression in human hepatocytes. J Lipid Res 51:2223–33.
  • Starkey Lewis PJ, Merz M, Couttet P, et al. (2012). Serum microRNA biomarkers for drug-induced liver injury. Clin Pharmacol Ther 92:291–3.
  • Thomas M, Burk O, Klumpp B, et al. (2013). Direct transcriptional regulation of human hepatic cytochrome P450 3A4 (CYP3A4) by peroxisome proliferator-activated receptor α (PPARα). Mol Pharmacol 83:709–18.
  • Uehara S, Murayama N, Yamazaki H, et al. (2010). A novel CYP2A26 identified in cynomolgus monkey liver metabolizes coumarin. Xenobiotica 40:621–9.
  • Uehara S, Uno Y, Ishii S, et al. (2017a). Marmoset cytochrome P450 4A11, a novel arachidonic acid and lauric acid ω-hydroxylase expressed in liver and kidney tissues. Xenobiotica 47:553–61.
  • Uehara S, Uno Y, Suzuki T, et al. (2017b). Strong induction of cytochrome P450 1A/3A, but not P450 2B, in cultured hepatocytes from common marmosets and cynomolgus monkeys by typical human P450 inducing agents. Drug Metab Lett 10:244–53.
  • Uno Y, Fujino H, Iwasaki K, et al. (2010). Macaque CYP2C76 encodes cytochrome P450 enzyme not orthologous to any human isozymes. Curr Drug Metab 11:142–52.
  • Uno Y, Fujino H, Kito G, et al. (2006). CYP2C76, a novel cytochrome P450 in cynomolgus monkey, is a major CYP2C in liver, metabolizing tolbutamide and testosterone. Mol Pharmacol 70:477–86.
  • Uno Y, Hosaka S, Matsuno K, et al. (2007). Characterization of cynomolgus monkey cytochrome P450 (CYP) cDNAs: Is CYP2C76 the only monkey-specific CYP gene responsible for species differences in drug metabolism?. Arch Biochem Biophys 466:98–105.
  • Uno Y, Iwasaki K, Yamazaki H, et al. (2011). Macaque cytochromes P450: nomenclature, transcript, gene, genomic structure, and function. Drug Metab Rev 43:346–61.
  • Uno Y, Kito G. (2011). Effect of estradiol on gene expression profile in cynomolgus macaque liver: implications for drug-metabolizing enzymes. Drug Metab Dispos 39:2003–7.
  • Uno Y, Uehara S, Murayama N, et al. (2011). CYP1D1, pseudogenized in human, is expressed and encodes a functional drug-metabolizing enzyme in cynomolgus monkey. Biochem Pharmacol 81:442–50.
  • Uno Y, Uehara S, Murayama N, et al. (2011). CYP2G2, pseudogenized in human, is expressed in nasal mucosa of cynomolgus monkey and encodes a functional drug-metabolizing enzyme. Drug Metab Dispos 39:717–23.
  • Uno Y, Uehara S, Yamazaki H. (2016). Utility of non-human primates in drug development: comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes. Biochem Pharmacol 121:1–7.
  • Wang L, Oberg AL, Asmann YW, et al. (2009). Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines. PLoS One 4:e5878.
  • Yokoi T, Nakajima M. (2011). Toxicological implications of modulation of gene expression by microRNAs. Toxicol Sci 123:1–14.
  • Yu D, Green B, Tolleson WH, et al. (2015). MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochem Pharmacol 98:215–23.
  • Yu AM, Tian Y, Tu MJ, et al. (2016). MicroRNA pharmacoepigenetics: posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab Dispos 44:308–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.